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EXECUTIVE S UMMARY

1. What are the concerns associated with emissions from subsonic aviation?

Subsonic aircraft operate primarily in the upper troposphere and lower stratosphere. Engine

exhaust emissions of gases and particles from fleets of these aircraft are potentially in sufficient

amounts to affect atmospheric ozone and climate, particularly with the projected growth in air

traffic.

• Important emissions include: water vapor, carbon dioxide, nitric oxide and nitrogen dioxide

(collectively referred to as NOx), sulfur oxides, carbon monoxide, non-methane hydrocarbons,

and soot.

• The impact of these emissions depends on the relative change they induce in the background

atmosphere and on their role in atmospheric photochemical, dynamical, and radiative

processes. Photochemical processing of these emissions can affect ozone and other important

species. Climate change may result from changes in concentrations of radiatively important

species (e.g., water, carbon dioxide, ozone, and particles). Formation of contrails and changes

in clouds caused by aircraft emissions can also affect climate.

2. How well understood are emissions from current subsonic aircraft?

For engines operating at cruise conditions, a growing body of in-flight and engine chamber test

data is available for gaseous and particle emissions. Detailed inventories of aviation fuel use and

the emissions of NOx, carbon monoxide, and non-methane hydrocarbons have been calculated for

air traffic in 1990 and 1992.

• Calculated aviation fuel use is approximately equal to reported fuel production by refineries,

within the estimated uncertainties.

• NOx emission indices (grams NOx/kg fuel burned), readily derived from measurements taken

behind commercial airliners in flight, are in good agreement with emission indices calculated

for those flight conditions using the methodology developed for the emission inventories.

• Measured concentrations of volatile particles (presumed to be primarily composed of sulfuric

acid) in commercial aircraft wakes are large and show significant and unexplained variability

(approximately a factor of 100) between different airplanes. In some cases their production

can be related to the sulfur content of the fuel.



3. What are the important atmospheric processes potentially affected by subsonic
aviation?

Chemical and radiative processes in the atmosphere can be affected by subsonic aircraft emissions.

The concentration of tropospheric ozone, an important greenhouse gas, is determined by transport

and by chemical production and loss involving reactions of NOx, non-methane hydrocarbons,
carbon monoxide, and hydrogen oxides (collectively referred to as HOx). The radiative balance of

the atmosphere is affected by clouds, aerosols, and trace constituents such as carbon dioxide,

water, and ozone. The most important ways in which these processes can be affected are:

• The ozone balance in the upper troposphere and lower stratosphere can be perturbed by

increases in NOx and, to a lesser extent, by increases in carbon monoxide, water, and non-

methane hydrocarbons from aircraft. Aerosols produced from sulfur oxides, soot, and water

emitted by aircraft may have an indirect effect on ozone concentrations through reactions that
take place on aerosol surfaces.

The radiative balance of the atmosphere can be affected both directly by the accumulation of

carbon dioxide, water and other emissions from aircraft and indirectly through changes in
ozone due to reactions involving NOx and other emissions.

The radiative balance of the atmosphere can be perturbed by aircraft-induced changes in

aerosols and clouds. Chemical and physical processes occurring in the aircraft plume and

wake produce aerosols and, under suitable conditions, rapid growth of the aerosol particles

produce visible "contrail" clouds. In addition to their direct radiative effects, aircraft-derived

aerosols and contrails may affect the radiative balance indirectly by increasing high cloud
occurrence and/or changing cloud radiative properties.

4. What are the estimated impacts of subsonic aviation?

Models used to study the impacts of subsonic aircraft must be able to represent the spatial and
temporal variations in tropospheric processes, consequently, the best assessment tools are 3-D

models that simulate the meteorological variability of the atmosphere. Several three-dimensional

models were used in this assessment in a series of sensitivity studies to examine the impact of
current and projected aircraft emissions on atmospheric chemistry and climate.

Impacts on atmospheric chemist_

° Model studies done for this assessment suggest that current aircraft emissions contribute a

significant fraction of the NOx in the upper tropospheric region between 7- and 13-km: 5 to

10%, averaged globally; up to 20%, averaged between 30°N and 60°N.

Although subject to substantial uncertainties, model studies suggest that emissions of NOx

from current aircraft have increased upper tropospheric concentrations of ozone, by about 1%,

averaged globally, and 3%, averaged between 30°N and 60°N. This corresponds to an increase

in total column ozone of approximately 0.1%, averaged globally and 0.3%, averaged between
30°N and 60°N.

vi



Effects on ozonefrom aircraft emissionshave not beendiscernedin existing long-term
observationaldatasets,in partbecauseof theyear-to-yearvariability measuredin tropospheric
ozone.

Model calculationsshowthat increasesin ozonefrom growth in the subsonicfleet will be
roughlyproportionalto the increasedemissionsof NOx.

Current emissionsof carbon monoxide and non-methanehydrocarbonsdo not have a
significanteffectonozonein themodelcalculations.

Impacts on climate

Current emissions of carbon dioxide from aircraft are 2.5% of the total emissions from fossil

fuel use. Over the last 30 years, aircraft have contributed about 1.5% of the industrial increase

in atmospheric carbon dioxide, or approximately 0.5 ppmv (parts per million by volume). In

equilibrium this would lead to a calculated surface air temperature change of approximately

0.007 °C.

Current emissions of NOx from aircraft, through induced changes in atmospheric ozone, are

estimated to have an effect on climate that is comparable to that from aircraft carbon dioxide

emissions. As carbon dioxide and NOx emissions increase in the future, the climate response

will increase as well.

Direct climate effects caused by accumulation of water vapor, carbon monoxide, non-methane

hydrocarbons, sulfur oxides, and soot emissions from the current and projected aircraft fleets
are estimated to be small relative to aircraft carbon dioxide emissions.

Model sensitivity studies suggest that the climate impacts of aircraft-induced increases in cloud

cover are potentially significant relative to those of other aircraft emissions. In some locations,

high-altitude cloud cover has been observed to increase in conjunction with aircraft contrails.

However, .an accurate quantification of large-scale changes in cloud cover and corresponding

radiative properties is not possible currently because of limited observational data and

insufficient knowledge of the physical interactions between aircraft exhaust and clouds.

Some aircraft-induced perturbations in climate forcing, such as those from increased ozone,

generally occur near the tropopause. Recent climate model studies indicate such perturbations

are less effective in inducing surface air temperature changes than the same climate forcing

applied to lower levels. As a result, the Global Warming Potential concept, which was

developed for carbon dioxide and other well-mixed gases, may not represent as accurately the

climate impact of ozone changes.

5. How good are current estimates of subsonic aviation impacts?

The validity of any model predictions can only be evaluated by formal numerical tests. Such tests

include both intercomparison of results from different models and comparison of model

simulations with atmospheric observations. Evaluation of the accuracy of our current predictions

of subsonic aircraft impacts is restricted by insufficiencies in atmospheric data and inadequate

representation of some key physical and chemical processes in assessment models. Specifically,

model representation of chemical, transport, radiative and cloud processes must be rigorously

tested.
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Testing of models used for ozone changepredictions by comparison to atmospheric
observationsis hinderedby the lack of a suitablemeasurementdatabase.Comparisonto
existingobservationssuggestssignificantdeficienciesin theability of modelsto predictthe
abundanceof nitrogenoxidesandtheir partitioninginto activeandinactivereservoirs.Models
alsohavedifficulty in reproducingseasonalandvertical distributionsof uppertropospheric
ozone.Theseidentifiedinadequaciesreduceconfidencein thereportedvaluesof ozonechange
dueto aviation.

• Wherewe areableto calculateaircraft perturbationsto tracegasabundances(e.g., carbon
dioxide andozone),thedirect radiativeeffectsof suchchangesareprobablyunderstoodwell
enough,giventhesmallmagnitudesof thepredictedchangesandtheabsenceof any identified
largechemical-radiativefeedbacks.Indirectradiativeeffectsof changesin aerosolabundance
andcompositionare lesswell understood. The propertiesof cirrus clouds, suchascloud
frequency,arealextentandopticalproperties,arenot well representedin climatemodels,and
aircraft radiativeeffects may be large. Climate feedbacksassociatedwith large radiative
perturbationsarenotwell understood.

• Global chemistry models have a consistent representationof photolysis and chemical
mechanisms.Limited modelintercomparisonsshowthatcalculatedclear-skyphotolysisrates
agreewith eachotherto within 10%,andcalculatedozoneproductionandlossratesagreeto
within 10 to 15%. However, the different transport formulations,spatial resolutionsand
meteorologyamongcurrent3-Dmodelsproducea widerangein results,up to afactorof 4 in
thecalculatedconcentrationsof nitrogenoxidesin theuppertroposphereattributedto different
sources.Thesediscrepanciesworsenin thenear-tropopauseregion.

• The conversionof NOxemissionsto nitric acid (HNO3)in theplumesandwakesof aircraft
arebothcalculatedandobservedto besmall. Sulfurdioxide(SO2)conversionto sulfuric acid
(H2SO4)andsubsequentformationof volatile aerosolin aircraftplumesandwakes,aswell as
aerosolinteractionwith emittedsoot,arenotwell understood.

6. What is needed to improve the assessment of the impacts of subsonic aviation?

Substantial improvements in the fundamental understanding and model treatment of upper

tropospheric gas and particle sources and chemistry and transport processes are required before

more credible quantitative ozone and climate predictions can be made. A number of key scientific

uncertainties have been identified in this assessment, although none of these uncertainties have

been quantified yet. Future efforts are expected to focus on improving the predictive capabilities of

3-D chemistry and climate models through collection of critical field and laboratory datasets and

further development of model parameterizations of atmospheric processes. Some specific

strategies for progressing toward more credible aircraft impact predictions are listed below in no
particular order of priority:

Quantify the increase in NOx in the atmosphere that is due to aircraft emissions by acquiring
and analyzing a comprehensive and reliable set of atmospheric observations. Of interest are

measurements made both inside and outside principal aircraft routes. Additional

measurements are needed to investigate the magnitudes and distributions of other sources of

upper tropospheric NOx such as lightning, stratospheric intrusions, and surface convection.

..,
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• Determine the net rate of ozone production as a function of NOx and HOx concentrations in the

upper troposphere. Obtain suitable measurements of nitrogen and hydrogen oxides and use

them to improve the understanding of nitrogen and hydrogen partitioning and chemistry, gauge

the role of aqueous phase and heterogeneous reactions, and evaluate the influence of non-

methane hydrocarbon chemistry.

• Obtain measurements of atmospheric species with well-understood sources and sinks and use

them to test model treatments of transport processes such as convection. Intercompare model

treatments of transport in the troposphere.

• Determine the fraction of aircraft exhaust emitted into the lower stratosphere by analysis of

emissions as a function of altitude relative to the tropopause. Improve model treatments of

near tropopause chemistry and transport.

• Characterize aerosol production in the engine exhaust, including conversion of sulfate species

and production and loss of cloud-forming particles, through further aircraft wake observations

and engine test cell studies.

• Develop a physical model for the formation and persistence of contrails by analysis of new

datasets that address the microphysical and radiative properties of contrails and exhaust-altered

cirrus, and the environmental conditions that promote ice particle growth and control the spatial

distribution of contrails and high clouds. Identify contrail case studies for testing models (e.g.,

high-resolution mesoscale or cloud models) and satellite retrievals.

• Provide basis for improving parameterizations in global climate models by conducting two-

dimensional (2-D) and 3-D mesoscale cloud model simulations of the time evolution of

contrail microphysical and radiative properties. Test model predictions with available

observations.

ix





ATMOSPHERIC EFFECTS OF SUBSONIC AIRCRAFT:

INTERIM ASSESSMENT REPORT OF THE ADVANCED

SUBSONIC TECHNOLOGY PROGRAM

1. INTRODUCTION

An immense and complex world transportation system has evolved that serves as the lifeblood of

present national and international economies. Aviation connects distant peoples and places; as such

it has become an integral part of a rapidly developing global society. Today, commercial airlines

transport hundreds of millions of passengers per year over distances ranging from hundreds to

thousands of miles. In terms of total passenger miles, transport by aviation represents about 10%

of the total due to all forms of modern transportation. This fraction is likely to grow since aviation

travel continues to increase at rates exceeding other forms of transportation. Industry forecasts

predict growth in world aviation travel of 70% over the next ten years and 180% over the next

twenty years [Boeing, 1996; Douglas, 1995].

The bulk of current air travel is provided by jet aircraft burning hydrocarbon-based "fossil" fuels.

As with other fossil fuel transportation technologies, jet aircraft operation results in gaseous and

particle combustion byproducts. Emission of these byproducts around airports during aircraft

landing and take-off (LTO) cycles was recognized long-ago as a possible contributor to urban

smoke problems and photochemical smog generation. In response to those concerns, the

International Civil Aviation Organization (ICAO) adopted standards in 1981, based on a

precautionary principle, that limited emissions of smoke, carbon monoxide (CO), unburned

hydrocarbons (HC), and reactive oxides of nitrogen (NOx = nitric oxide (NO) + nitrogen dioxide

(NO2)). In recent years, these standards have been periodically reviewed and strengthened to

reflect improvements in engine design and manufacture.

Although much of the initial environmental focus on subsonic aircraft has been directed at LTO

emissions, the majority of aircraft emissions are released at cruise altitudes (i.e., 9 to 13 km) where

aircraft spend most of their time during flight. This region of the atmosphere, encompassing both

the upper part of the troposphere (UT) and the lower part of the stratosphere (LS), differs

markedly from the portion of the atmosphere near the ground (i.e., the tropospheric boundary

layer) that is of interest in the LTO case. Whereas the boundary layer is typified by highly

turbulent mixing and diurnally varying temperature and wind conditions, the UT/LS is subject to

substantially less vertical mixing and little diurnal variation in meteorology. Only in regions with

deep convection, such as frontal activity or thunderstorms, can constituents be effectively

transported to the UT. For the most part, reactive gases and particles emitted in the boundary layer

are mostly confined to the area of release because they frequently encounter surface loss sites, such

as soil and water. As a result, only a small fraction of reactive, surface emitted species ascend into

the relatively 'clean' UT/LS. By directly emitting materials into the UT/LS, commercial aircraft

"bypass" these atmospheric cleansing mechanisms and thus constitute a significant fraction of the

upper tropospheric burden of trace constituents and particles.

Species reaching the UT/LS, where residence times are fairly long, can be transported substantial

distances before removal. As an example, for a typical westerly upper tropospheric flow pattern



found at northernmid-latitudes,air parcelstraversethe globealonga latitudinalcircle in ten to
twentydays,timescalesthatarecomparableto thechemicallifetimesof evenmoderatelyreactive
species.Accordingly,alongwith helpingto createa globaltransportationnetwork,aviationmay
contributetoglobalscaleenvironmentalchangesthatreachfarbeyondtheprimaryareasof aircraft
operation.

The recently establishedlinks between the human-causedbuildup in the atmosphereof
chlorofluorocarbons(CFCs)andcarbondioxide(CO2)to stratosphericozonedepletionandglobal
warming,respectively,haveincreasedawarenessof thepotentialfor humanactivitiesto affectthe
atmosphereonaglobalscale.Thescientificassessmentof the impactof theproposedHigh-Speed
Civil Transport(HSCT)on stratosphericozonehasbecomevery importantas interestin building
suchan airplanehas heightened[Pratherand Wesoky, 1992; Stolarski and Wesoky, 1993;
Stolarski et al., 1995]. While there is no evidence linking present subsonic aircraft to ozone

depletion, subsonic aircraft emissions in the UT/LS are of concern in general, since they can

change the local atmospheric concentrations of many trace substances. These include nitric oxide

(NO), nitrogen dioxide (NOz), ozone (O3), water vapor (H20), hydrocarbons (e.g., CH4), sulfur

dioxide (SO2), and particles (soot, sulfates), all of which can directly or indirectly lead to changes

in the global radiation balance and result in climate change. In addition, subsonic aviation currently
accounts for ~3% of the world fossil fuel usage, and is therefore an obvious, if small, contributor

to the buildup of global CO2 levels.

While the effects of increased CO2 are well defined, the details of the effects of the other mentioned

subsonic aircraft emissions are less well understood, and are the primary focus of this assessment.

The magnitudes of atmospheric changes due to aviation depend, in large part, on the amount of

aircraft emissions relative to corresponding natural and other anthropogenic emissions. In this

context aircraft emissions must be quantified relative to the fraction of surface emissions that are

lifted to the UT/LS, the fraction of upper stratospheric air that descends into the UT/LS, and, in the

case of NOx, the amount created by lightning. In theory, the various sources can be differentiated

by direct observations of atmospheric composition, provided that each source possesses a unique

signature. Unfortunately, this separation has proven difficult in practice. For instance, aircraft

emission features largely resemble those of urban ground emissions.

Because of the complexities inherent in differentiating various chemical sources, the primary

method for quantifying aircraft impacts on the global-scale atmosphere is the use of mathematical

models. The physics and chemistry contained in any credible model are developed from, and

tested against, relevant laboratory findings and atmospheric observations. Modeling tools used in

global atmospheric assessments range from zero-dimensional box model calculations to full three-

dimensional (3-D) treatments of the dynamical and chemical features of the atmosphere. The

choice of modeling tool depends on the degree to which some of the physical and chemical

complexities can be neglected and others can be treated with simplified or approximate

mathematical expressions. The appropriateness of a particular choice of model tool can only be

established through comparison with other models and with atmospheric and laboratory data.

The Subsonic Assessment (SASS) component of NASA's Advanced Subsonic Technology

Program is designed to assess the atmospheric effects of cruise emissions from the existing world

fleet of subsonic jet aircraft and the potential effects of a likely larger future subsonic fleet. The

sought after assessment will be comprised of numerical predictions of regional and global scale



impactsandquantitativeappraisalsof theuncertaintiesassociatedwith suchpredictions(seeFigure
1-1). The SASSprojectis plannedfor aneight-yearduration(1994to 2001). Overthatperiod,
SASSisaimedat improvinga numberof atmosphericscienceassessmenttools. In particularthe
projectseeksto accelerate3-D chemistrytransportmodel (CTM) and generalcirculationmodel
(GCM) development,formulaterigorousbenchmarksandtestsof modelperformance,andcollect
andanalyzeatmosphericandlaboratorydatain a few areasof critical conceptualuncertainty. A
detaileddescriptionof SASS plans can be found in the First Report of the SASS Project
[Thompsonet al., 1996].

This first interim assessment of the SASS project attempts to summarize concisely the status of our

knowledge concerning the impacts of present and future subsonic aircraft fleets. It also highlights

the major areas of scientific uncertainty, through review of existing databases and model-based

sensitivity studies. In view of the need for substantial improvements in both model formulations

and experimental databases, this interim assessment cannot provide confident numerical predictions

of aviation impacts. However, a number of quantitative estimates are presented which provide

some guidance to policy-makers.

The interim assessment is organized into six chapters. In Chapter 2, we summarize the

development of detailed fleet emission scenarios on 3-D grids suitable for input into CTMs and

GCMs. Emission indices (EIs) for individual species are discussed and folded into global

inventories for 1990 and 1992. The resulting emission databases include scheduled and charter

airlines and military aviation. The databases reflect the complete flight cycle, including takeoff,

climb, descent, and landing. Uncertainties in the databases are discussed as well as methodologies

for predicting future fleet emissions.

Chapter 3 reviews the progress made in qualitatively understanding the effects of aircraft emissions

on UT/LS gas and particle levels and the consequences of such perturbations on chemical and

radiation processes related to ozone and climate. Chemistry effects discussed include ozone

tendencies in response to NOx and hydrocarbon perturbations, increased polar stratospheric cloud

catalyzed chemistry due to H20 injections, and possible tropospheric heterogeneous chemistry due

to aircraft particle emissions. Climate effects are discussed in terms of direct and indirect changes

to the average net radiation at the top of the troposphere. Changes of this sort, defined as

"radiative forcings," are related to a number of processes, including clear sky and cloud impacts of

gaseous and particulate emissions.

Chapter 4 summarizes progress in realistically incorporating our understanding of the chemical,

dynamical, and radiative processes in models that can be used to predict subsonic aircraft fleet

impacts. The focus in this interim assessment is on evaluating the strengths and weaknesses of

some existing CTMs and GCMs in their application to the aviation issue. As part of this

evaluation, model test results are compared with selected data from existing observational datasets.

Both the quality of the model results and observational datasets are discussed. The results of this

evaluation are intended to serve as a guide for planning future model and observational database

development efforts.

Due to existing inadequacies in both assessment models and databases, it is important to delineate

methodologies and approaches which will facilitate future improvements in the model assessment

capabilities. One assessment tool envisioned for the future is a "core" 3-D chemical transport

model which would bring together models and submodels from independent researchers on a



commoncomputingplatform. Theintendedvalueof thistool wouldbe to enablefar greaterlevels
of modelevaluationthancanbe appliedpresentlyto individual models. Progresstowardsthe
developmentof this tool hasbeenpursuedwithin theGlobalModelingInitiative(GMI) component
of theSASSprojectandsometestsof theNASA-sponsoredcoremodelarereportedin Chapter4.

Chapter5 summarizestheconclusionsof theprecedingchaptersandevaluatestheprogressthathas
beenmadeon understandingthe atmosphericimpactsof eachaircraft exhaustspecies. Most
importantlyit identifiesthescienceareaswhereincreasedemphasisover thenext threeyearswill
mostbenefitthenextassessmenteffort.

Chapter6 lists theliteraturereferences.Theattachedappendicesprovidelistingsof reportauthors
andcontributors,acronymsandabbreviations,andchemicalnomenclatureandformulae.

Subsonic aircraft

emissions

Identification and distribution o4
aircraft emission source In the

atmosphere

Laboratory studies

IdenUficstion of atmospheric
processes and associated rate

coefficients

Atmospheric observations

Identification of photochemical,
radiative, and dynamical

features of the upper
troposphere and

lower stratosphere

,_3-D photochemical

transport end

global climate
models

comparisons

1
i Predicted changes

In climate-related

species end

parameters

PredictionUncertainties

Other atmospheric models

2-D global models
Conceptual and process models

Figure 1-1. Schematic of the Subsonic Scientific Assessment Process.
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2. AIRCRAFT EMISSIONS

2.1 Emissions Characteristics

Combustion of jet fuel produces both gaseous products (e.g., CO2, H20, NOx, CO,

hydrocarbons) and particles (e.g., soot, sulfate). These emissions are initially produced in the

combustor, undergo some chemical changes in the turbine and nozzle of the engine, and then are

emitted to the atmosphere at the nozzle exit. Further chemical processing occurs in the plume

behind the aircraft as the emissions are entrained in the wing-tip induced vortices (e.g., conversion

of NO ---, NO2 ---, HNO3 (nitric acid)/PAN (peroxyacetyl nitrate)/HNO4 (peroxynitric acid),

SO2 --, SO3 (sulfur trioxide) ---, H2SO4 (sulfuric acid)). Also in this plume region, conversion of

sulfur oxides (SOx) to (H2SO4) leads to the production of H2SO4 aerosols with subsequent

aggregation and conglomeration of soot and sulfate aerosols. On a longer time scale, the aircraft

plumes disperse and contribute to processes occurring in the background atmosphere.

In this section, the characteristics of aircraft emissions at or near the nozzle exit are discussed. The

3-D global inventories of aircraft emissions that are used as input to the modeling calculations are

also described. More detailed discussions of plume and wake processing of aircraft emissions are

presented in Section 3.1.

2.1.1 GASEOUS EMISSIONS

The primary emissions from aircraft engines are CO2 and H20 produced by the combustion of jet

fuel. The emission levels are determined by the fuel consumption, combustion efficiency and the

fraction of hydrogen and carbon in the fuel. Similarly, emission of SOx from aircraft engines is

determined by the level of sulfur in the jet fuel. Jet fuel specifications require sulfur levels below

0.3% but levels are typically much lower than this. Measurements of fuel samples from a number

of international airports yielded an average sulfur content of 0.042% (by weight) with 90% of the

samples below 0.1% [Hadaller and Momenthy, 1989]. Future sulfur levels are projected to drop

to about 0.02% [Hadaller and Momenthy, 1993] because of changes in refinery technology and the

use of hydrotreating to reduce the aromatic content of refinery products.

The emissions are characterized in terms of an emission index (EI) in units of grams of emission

per kilogram of fuel burned. Current and projected EIs are summarized in Table 2-1, based on the

analyses of Hadaller and Momenthy for commercial Jet A fuel [Baughcum et al., 1996a].

Emissions of NOx, CO, and hydrocarbons (HCs) vary in quantity according to the combustor

conditions and design. Nitrogen oxides are produced in the high temperature regions of the

combustor primarily through the oxidation of molecular nitrogen. Thus, the amount of NOx

produced by an aircraft engine is sensitive to the pressure, temperature, flow rate, and geometry of

the combustor. The combustor conditions, and hence the NOx emissions, vary with the power

setting of the engine, being highest at high-thrust conditions. By contrast, carbon monoxide and

hydrocarbon emissions are highest at low power settings where the temperature and pressure of the

engine is low and combustion is less efficient. Nitrogen oxide emissions at the nozzle exit consist

of about 90% NO and 10% NO2 by mass. For NOx, the EINOx is given as gram equivalent NO2

to avoid ambiguity.
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Totalhydrocarbonemissionsaremeasuredwith a flameionizationdetectoras part of the engine

certification tests. Data on hydrocarbon speciation are much more limited. Spicer et al. [1992]

measured methane as the dominant hydrocarbon in the exhaust but at concentrations lower than in

ambient air indicating that aircraft are a net sink for methane in the atmosphere. Emissions of a

number of aliphatic and aromatic compounds were measured in tests of two military engines

[Spicer et al., 1992] and from two engines used on transport aircraft [Spicer et al., 1994]. Alkanes

were the most significant hydrocarbons at all power levels. Alkene, aldehyde and ketone

concentrations were much lower at higher power settings than at idle conditions.

As part of the certification process for each engine type for commercial aircraft, NOx, HC, and CO

emissions are measured on engine test stands and corrected to standard day, sea level conditions.

Measurements are made at power settings of 7% (idle), 30% (approach), 85% (climb out), and

100% (take-off). These measurements have been developed to evaluate aircraft emissions in the

vicinity of airports, rather than for cruise altitude conditions. They do, however, provide a

comprehensive database for interpolation to cruise conditions. Boeing has developed an empirical

fuel flow correlation method to calculate emissions at different flight conditions using the

emissions indices from the certification measurements [see Appendices C and D of Baughcum et

al., 1996a]. This method includes corrections for ambient temperature, pressure, relative

humidity, and installation effects. Installation effects include corrections for the extraction of cabin

bleed air in flight, nominal power extraction in flight, and differences between the engine inlet used
in the static test and on the aircraft.

The dependence of the emission levels on the fuel flow rate is shown in Figure 2-1 for the engine

used on the NASA DC-8 research aircraft. The points for sea-level static conditions (solid line) are

extracted from the ICAO database [ICAO, 1995]. EINOx and smoke emissions (discussed later)

increase with increasing fuel flow rate while the EIHc and EIco decrease by one to two orders of

magnitude. For cruise conditions (dotted line), corrections for both installation effects and ambient

conditions must be included [Lyon et al., 1979, 1980]. As a reference point, the DC-8 on a 3000-

nautical mile (nmi) mission begins cruise at 35 kft with a fuel flow of about 0.37 kg s _ (EINOx =

11.2) and ends cruise at 39 kft with a fuel flow of about 0.29 kg s _ (EINOx = 9.7). Assuming the

aircraft flies an optimum flight profile, as it burned fuel it would fly higher and the fuel flow rate

would decrease as it became lighter.

Representative effective emission indices for a number of aircraft types are summarized in Table

2-2. The results are shown for two altitude bands: 0- to 9-km (corresponding to takeoff, climb,

descent, landing, and taxi operations) and 9- to 13-km (corresponding to cruise and, in some

cases, a portion of the initial climb to start of cruise). These effective EIs were obtained by

calculating individual emission inventories for each aircraft type as it was used in April 1992 and

then analyzing the fuel burned and emissions in the two altitude bands. Calculations were done for

the different engines used by that aircraft type and then totaled. For each aircraft type, the daily

fuel use and that aircraft's fraction of the total by all scheduled aircraft also are shown. More

detailed results are provided in Baughcum et al. [1996a]. Emission indices at any point in an

individual flight will depend on the engine type, fuel burn rate, and ambient temperature and

pressure.

The efficiency of a combustor can be calculated directly from the EIs of CO and unburned

hydrocarbons. As combustors have become more efficient, the EIs for CO and hydrocarbons have

decreased. EIs for NOx have generally increased with the higher temperatures of more efficient
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combustors.For example,acomparisonof theemissionindices at cruise altitudes for the Boeing

707,727, and 757 (see Table 2-2) illustrates this trend. Increases in EINOx have been balanced by

improvements in aircraft/engine performance that have reduced the fuel use per passenger mile as

new generations of aircraft have been developed. Thus, while some aircraft types have similar

EIs, their fuel use per passenger mile may vary.

Recently extensive measurements have been made of emissions at the exit plane of engines in

altitude chambers. As part of the Impact of NOx Emissions from Aircraft upon the Atmosphere

(AERONOX) program, measurements were made behind RB211 (used on L 1011 and some B747,

B757 aircraft) and PW305 (used on long range business jets) combustors [Schumann, 1995].

Similar measurements have just been completed behind a commercial-type bypass jet engine at the

US Air Force Amold Engineering Development Center (AEDC) [Howard, 1996]. These

measurements have characterized the emissions over a wide range of ambient conditions and will

be used to evaluate the methods used to predict emission levels at altitude. The AEDC

measurements include a comparison of the conventional certification methods with other

measurement techniques such as tunable diode laser (TDL) absorption [Wormhoudt et al., 1996].

The results are in good agreement indicating that it may be feasible to make measurements of other

species in the exhaust using the TDL technique. The AERONOX results have been used to

evaluate some of the different methods used to predict EINOx. The AERONOX report concluded

that the variability in NOx predictions can be reduced to __.18% by referencing all prediction

equations to ground-level NOx certification data. They also concluded that the uncertainty in

calculating emission indices is typically <__.15 to 20%. The AERONOX study comparison was
made to an older version of the fuel-flow correlation method used in the NASA studies. That

method was later updated to be more accurate at cruise altitudes. The newer method [Baughcum et

al., 1996a] was used in the calculation of the emission inventories given in this assessment. Its

predictions have not yet been compared with the AERONOX altitude chamber measurements.

In situ measurements of aircraft emissions have been made behind commercial subsonic airliners

[Arnold et al., 1992; Schulte and Schlager, 1996; Schulte et al., 1996], behind the NASA ER-2

high-altitude aircraft [Fahey et al., 1995a] and behind the Concorde [Fahey et al., 1995b]. By

measuring changes in CO2 and NOx concentrations both within and outside of the aircraft plume,

EINOx values are obtained. The EINOx measurements behind the Concorde were in good

agreement with previous altitude chamber measurements. The measurements behind the Concorde

and the ER-2 included a number of other species that provide insight into the chemical and physical

processes occurring in the plume. Observations of particles will be discussed in Section 2.1.2. As

part of the European Pollution from Aircraft Emissions in the North Atlantic Flight Corridor

(POLINAT) program, simultaneous measurements of NO and CO2 have been made behind

commercial aircraft. The measurements have been made behind both smaller aircraft (MD80, 727,

707,737) [Schulte and Schlager, 1996] and larger aircraft (747, DC10, A340) [Schulte et al.,

1996]. They conclude that within the present uncertainties, the measurements are in general

agreement with predictions based on ground-based test data. Measurements and analyses
continue.

2.1.2 PARTICLE EMISSIONS

Particle emissions from aircraft appear to arise from two causes: soot produced directly in the

combustor and sulfuric acid aerosols produced indirectly by the oxidation of sulfur dioxide in the



near-fieldbehind the aircraft. A third cause,namely sulfur trioxide (SO3) generationin the
combustorfollowed by sulfategenerationin thenear-field,hasbeensuggestedrecentlyby some
atmosphericobservations,but remainsto be fully investigated.In this sectionwe will focus on
engine-derivedsootemissionsanddeferdiscussionof sulfategenerationto Section3.1.

Thecertificationmeasurementson aircraftenginesinclude smokeemissions. In thesemeasure-
ments,theemissionsaresampledandparticlescollectedon afilter. The smokenumberis then
determinedfrom opacity measurements[SAE, 1991]. A typical dependenceof smokenumber
with fuel flow at sea-levelstaticconditionsis shown in the bottomright panelof Figure 2-1.
While thesemeasurementsprovide someguide to the mass of particle emissionsand their
dependenceon thrustsetting,theydo not addressthe issuesof most concern for an atmospheric

assessment (e.g., particle densities, size distributions, surface areas). It is not clear how to relate

the smoke numbers measured at sea-level static conditions to the particle size distribution emitted at

cruise altitudes. Accordingly, global emission inventories have not been constructed yet for soot.

Several efforts have been made recently to understand connections between smoke number and

soot characteristics. Altitude chamber measurements of smoke [Schumann, 1995] and of particles

[Howard, 1996] recently have been made from selected engines. The particle measurements made

at AEDC on an unspecified commercial-type bypass jet engine determined a soot emission index of

2.2 -,- 0.7 x 1013 particles kg -1 fuel burned or 0.012 _+ 0.001 grams soot kg -1 fuel burned

[Howard, 1996]. The size distribution was found to be a log-normal distribution (i.e., the number

of particles is a normal distribution of the logarithm of the particle diameter). The total number of

particles was the lowest of any engine characterized to date. Their measurements show only very

small, if any, correlation with fuel/air ratio, altitude or combustor inlet pressure, or temperature.

By contrast, measured smoke numbers vary with power setting [ICAO, 1995] (Figure 2-1). It is

not yet clear how to interpret this result, but it should be noted that the engine studied has a very

low smoke number and very low number of particles. In a separate study on the altitude

dependence of the particle emissions from a J85-GE-5L engine, Rickey [1995] concluded that

engine particle data taken at sea-level static test conditions do not adequately represent particle data

at higher altitudes. She also noted that there were differences in particle sizes and number densities

when comparing results taken on a combustor to measurements on the full engine.

Ground-based [Hagen et al., 1992; Lilenfeld et al., 1995], laboratory [Whitefield et al., 1993] and

simulated cruise [Howard, 1996] studies of hot jet exhausts indicate that subsonic jet engines emit

large numbers of nonvolatile particles <200 nanometers (nm) in diameter in a single-mode size

distribution (Figure 2-2) peaked at 30 to 60 nm. The low solubility of these particles suggesls that

they are primarily composed of soot and perhaps small amounts of H2SO4 formed via the

oxidation of sulfur compounds within the fuel [Lilenfeld et al., 1995]. Soot EI values ranging

from 0.03 to 0.4 g soot kg-l have been reported by Lilenfeld et al. [1995] for a GE404 engine

(used on an F-18 fighter), calculated from exhaust-plane particle size distributions and number

density measurements and engine fuel/air ratios, where the lowest values correspond to typical

cruise-altitude power settings. In addition, B. Anderson [personal communication], Schumann

[1996], Whitefield et al. [1996], and Hagen et al. [1996] report nonvolatile (presumably soot)

particle EIs ranging from 0.2 to 10 x 1015 particles kg -1 burned for several aircraft sampled in-

flight under typical cruise conditions (see Figure 2-3). Assuming the particles lie within a

relatively narrow size distribution peaked at 40 nm, these values imply particle mass EIs on the

order of 0.01 to 0.08 g soot kg -l, which is also consistent with the El values of Lilenfeld et al.
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[1995] for aircraftat cruisealtitudeandHoward [1996] for measurementundersimulatedcruise
conditions.

A set of in situ and ground-based measurements have also been conducted on the supersonic

Concorde aircraft. High number densities of non-volatile (presumably soot) particles were

observed in both sampling tests (5 x 1016 particles kg -1 <EInon_volatile <1018 particles kg-l),

although concen-trations were consistently higher in the ground-based sea level static test [Fahey et

al., 1995a, b; Lilenfeld et al., 1996].

Soot particle characterization remains an area of great uncertainty. Measurements behind the

relatively old and inefficient Concorde Olympus engine show much higher particle emissions than

from more modem commercial aircraft or the commercial-type bypass jet engine used in the AEDC

tests. Questions of how to relate smoke measurements made near the exhaust plane of the engine

nozzle to in-flight soot emissions remain unanswered.

2.2 Global Inventory Methodologies

Three-dimensional inventories of aircraft emissions have been developed recently by several

groups. In earlier NASA work, detailed inventories of emissions (fuel burned, NOx, CO, and

hydrocarbons) were calculated including scheduled, military, and non-scheduled (charter, former

USSR (Union of Soviet Socialist Republics), and China) air traffic for 1990 and projected to 2015

[Baughcum et al., 1993a, 1994; Landau et al., 1994]. More recent studies have focused on

calculating emission inventories for each month of 1992 to account for seasonal variation in air

traffic [Baughcum et al., 1996a; Metwally, 1995]. These studies have taken a "bottom-up"

approach in which aircraft schedules are utilized, aircraft/engine combinations identified, and then

detailed calculations of fuel burned and emissions are done along each flight path. Other studies

have used a mixture of a "bottom-up" approach to account for scheduled air traffic and a "top-

down" approach to account for military and non-scheduled traffic [Mclnnes and Walker, 1992;

Schumann, 1995]. The top-down approach starts with the assumption that you know the total

global fuel burned. It then calculates part of the inventory and treats the military and the non-

scheduled traffic as the difference between the total fuel use reported by the Organization for

Economic Cooperation and Development (OECD) and the calculated fuel use by scheduled air

traffic.

The Abatement of Nuisance Caused by Air Traffic (ANCAT) database [Schumann, 1995]

predicted higher fuel use and much higher NOx emissions for 1991-92 than was calculated in the

NASA inventory for 1990. Subsequent analysis as part of the ICAO Committee on Aviation

Environmental Protection (CAEP) Working Group 3 (WG3) activities concluded that the ANCAT

database used an EI methodology that overpredicted EINOx and included some double counts of

flights. The ANCAT database is being updated and will be released later in 1996 [R. Gardner,

personal communication]. An extensive comparison is planned between the new ANCAT database

and the 1992 emission inventories developed as part of the NASA project.

The methodology used in developing aircraft emission inventories for both scheduled [Baughcum

et al., 1994; Baughcum et al., 1996a] and non-scheduled [Landau et al., 1994; Metwally, 1995] air

traffic has been described extensively in earlier work and will not be repeated in detail here. The

basic approach used for the calculation of emissions from scheduled air traffic is shown in Figure

2-4. A similar process is used for the calculation of non-scheduled and military emissions.
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A schedule of aircraft frequencies between cities (i.e., city pair) for each aircraft type is

extracted from flight schedules (e.g., the Official Airline Guide (OAG)). Specifying the exact

aircraft/engine combination for a given flight involves matching the OAG aircraft code with the

aircraft models and engines used by that airline. It also requires eliminating duplicate flights

for the same airline and adjusting for code sharing of flights between two airlines (shown as

two flight numbers but with only one flight).

The aircraft/engine combinations used by the airlines are matched to a list of aircraft for which

detailed performance data is available. This performance database relates fuel burn and

optimum flight altitude to weight of the aircraft. Typically, the available performance dataset is

a much smaller subset of the total number of aircraft/engine combinations in use by the airline.

For the latest NASA analyses, approximately 230 aircraft/engine combinations in use by the

airlines were matched to a performance dataset consisting of 78 aircraft/engine combinations.

For each engine type considered in the dataset, a file of emission indices as a function of fuel

flow is obtained from the ICAO Engine Exhaust Emissions Databank [ICAO, 1995].

For each flight, the takeoff gross weight of the aircraft is calculated from the flight distance

(assuming great circle routing), including fuel reserves and an assumed 70% passenger load

factor. The altitude as a function of distance is determined from the gross aircraft weight for

the mission. The fuel burn rate is calculated from the performance data as a function of

distance. From the fuel burn rate, the emission indices are calculated using an emission fuel

flow methodology [Baughcum et al., 1996a], with corrections for ambient conditions. The

mission profile is then projected onto a 3-D grid (e.g., 1° latitude x 1° longitude x 1 km altitude

resolution).

5. Step (4) is repeated for all flights (approximately 55,000 departures/day).

2.3 1992 Emission Inventories

The emission inventories used in this assessment are based on air traffic in 1992. For each month,

emission inventories of fuel burned, NOx, CO, and hydrocarbons were calculated for both

scheduled [Baughcum et al., 1996a] and non-scheduled [Metwally, 1995] air traffic. Scheduled

traffic was defined as air traffic listed in the OAG and includes passenger jet airliners, freighters,

and turboprop aircraft. The non-scheduled traffic includes flights within the former Soviet Union

and China which were not included in the OAG, charter traffic, and estimates of military air traffic.

The emission inventories were generated on a 1* latitude x 1* longitude x 1 km pressure altitude

grid. For these calculations, improvements on the earlier methods were made to further eliminate

flight duplications, additional older aircraft/engine combinations were added to the database, and an

improved fuel flow correlation method was used to calculate emissions from scheduled air traffic.

The effect of these improvements on emissions calculated previously for scheduled air traffic in

May 1990 [Baughcum et al., 1994] was to decrease calculated global fuel use by 3.5%, decrease

global NOx by 1.3%, increase hydrocarbon emissions by 51%, and decrease CO emissions by

5.6% [Baughcum et al., 1996a]. The significant increase in hydrocarbons is thought to be

primarily due to the inclusion of additional older technology airplane/engine combinations to the

performance/emissions database in preparation for the calculation of historical emission inventories

[Baughcum et al., 1996b].
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The resultscalculatedfor 1992aresummarizedin Table 2-3 for eachmonthand for the annual
total. Theglobalfuel andNOxcalculatedfor 1992increasedslightly, 1.5%and4.0% respectively
from thatreportedearlier for 1990basedon May 1990as representativeof the annualaverage
[Baughcumet al., 1993a].

The spatial distribution of the emissions is shown in Figure 2-5. The majority of the emissions

occur at cruise altitudes (see Figure 2-6) and at northern mid-latitudes. Approximately 17% of the

emissions are released in the stratosphere [Baughcum, 1996b]. The distribution of fuel use and

NOx emissions in major geographical regions is summarized in Table 2-4. Approximately 94% of

the global fuel use and NOx emissions occurs in the Northern Hemisphere. Approximately 60% of

the fuel use and 55% of the NOx emissions occur in the 9- to 13-kilometer altitude band in the

Northern Hemisphere.

The seasonal variation in NOx emissions in the 9- to 13-kilometer altitude band is shown in Figure

2-7 for four major geographical regions (North America, Europe, North Atlantic and North

Pacific) (as defined in Table 2-4). These four regions account for 64% of the global NOx

emissions. The top panel shows the total NOx emissions deposited in each region in the 9- to 13-

kilometer altitude band as a function of month. The bottom panel shows the fractional deviation

from the annual average. The largest seasonal variation occurs in the North Atlantic with increases

of about 18% in the summer compared to the annual average. Similar seasonal variation is seen for

the other three regions but with smaller amplitude.

The relative NOx contributions of the different air traffic components are summarized in Table 2-5.

Scheduled commercial air traffic (including cargo) is calculated to account for about 70% of the

fuel use by aircraft and 74% of NO× emissions. Although not shown in Table 2-5, military air

traffic is calculated to account for a disproportionately large (>30%) fraction of the hydrocarbon

and carbon monoxide emissions from air traffic owing to the fuel rich operation of the engines.

However, further work on uncertainties in the military database is required.

2.4 Uncertainties in Aircraft Emission Inventories

The calculated total jet fuel use in 1992 was 136 million metric tons (metric ton = 1000 kg).

Reported apparent jet fuel consumption (distillate identified as jet fuel at the refinery) for 1992 was

171 million metric tons [DOE, 1995]. Thus, the calculated jet fuel use was 80% of that identified

as jet fuel at the refinery. Work is now underway to understand this difference. Several factors

may contribute to this:

1. Simplifying approximations are used to calculate the emission inventories and thus are expected

to lead to some systematic errors in calculating the fuel use. These are discussed below in

more detail but in general would lead to an underprediction of calculated fuel use.

2. Schedules for air traffic not listed in the OAG must be estimated and this is clearly one area of

uncertainty. Similarly, military schedules and flight profiles must be estimated.

3. General aviation is not included in the emission inventory calculation. For 1990, jet fuel use

by general aviation was estimated to be 3.5 million metric tons [Balashov and Smith, 1992].

This would correspond to 2% of reported jet fuel production. The recent general aviation

analysis conducted by McDonnell Douglas has indicated that the fuel consumption of this fleet
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is about 6%. This data has not been documented formally. The emission inventories of this

report also do not account for either military or domestic helicopter flights.

The reported jet fuel production numbers are not the ideal reference since they do not

necessarily represent jet fuel delivered to airports. Jet fuel is a fungible product and can be

reclassified and sold as kerosene or mixed with fuel oils and diesel fuels depending on market

requirements (e.g., when a low freezing point fuel is needed in the winter). Also, some other

distillate fuels from the refinery may satisfy jet fuel requirements and ultimately be purchased

and used as jet fuel. As a consequence, the reported jet fuel does not provide a rigorous upper

limit to jet fuel use. It is a convenient compilation of reports from different countries but its

accuracy has not been evaluated and may vary for different regions.

2.4.1 SIMPLIFYING ASSUMPTIONS

The development of aircraft emission inventories requires some simplifications, some of which are

done in order to make the calculations tractable (e.g., fuel flow methodologies for calculating EIs).

Others are simplifications due to the lack of more detailed data (e.g., exactly what aircraft/engine

combination was used on a specific flight). The major simplifications used in the calculations of
the NASA emission inventories are as follows:

(a) Scheduled Aircraft

• Aircraft are assumed to fly according to manufacturer's design performance specifications,

with fuel consumption and flight altitude determined by aircraft gross weight. Flight profiles

are calculated as cruise climb rather than step climbs constrained by air traffic control.

• Aircraft fly great circle routes between cities.

• The effect of winds is averaged by having flights in both directions (zero prevailing winds).

• Standard day temperatures are assumed for all flights.

• Aircraft fly with the correct amount of fuel for the mission plus safety reserves. No fuel

tankering occurs. Tankering is the practice of carrying enough fuel so that several flights are

made without refueling, in order to save time and money.

• Airports are treated as point sources with flights taking off and landing in the direction of their

destination. No special procedures are considered for different airports; all are treated alike.

• Congestion, both on the ground and in the air, is not considered. Weather effects are not

included. Air traffic delays and holding patterns are not considered.

• Fuel use by auxiliary power units is not considered.

All aircraft are assumed to fly with the same 70% load factor and no cargo other than passenger
luggage.

(b) Military, Unscheduled and Charter Aircraft

Some of the simplifications listed in (a) above are relevant to the unscheduled and charter

databases. In addition, the following simplifications and assumptions have been used in the

military database.
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• Military centersweresetup aroundtheworld andtheemissionsweredispersedin a starburst
fashionfrom thecenters.

• Sometransportaircraftflow wasassumedbetweenworld regions.

• The cruisepower settingsand operationalaltitudesof the aircraft were basedon available
technicalspecificationsbuthavenotbeenvalidated.

• The fleet sizesand mixes for the individual countrieswere obtained from a variety of
informationalsources.Assumptionsarerequiredregardingutilization of specificaircraft types
by givencountriesandcould leadto significanterrorsin theinventories.

Sincesomeof thesesimplifyingassumptionsmay leadto systematicerrors,a seriesof parametric
studiesareunderwayto evaluatetheir importance[Baughcumet al., 1996a]. Some of the results

are summarized below:

1. Wind and temperature effects: The calculations assume a standard atmosphere temperature

profile and that for a round trip flight wind effects will effectively average to zero.

Meteorological effects are evaluated using a database of monthly means and standard deviations

of winds and temperatures derived from daily National Meteorological Center (NMC) analyses

between July 1976 and June 1985. This database is incorporated into the Boeing WINDTEMP

program for use by both airline route planners and design engineers to calculate winds and

temperatures enroute between two selected cities. The code is integrated with Boeing's

performance analyses so that the effect of winds and temperatures on fuel consumption on a

given route can be calculated explicitly for different months of the year and for different

reliabilities. Using this database, it was found that the simplifying assumptions about wind

and temperature lead to a 1.4-2.3% underprediction of fuel use on East-West flights and a 1%

underprediction on North-South flights. In actual airline operation, where air traffic control

permits, aircraft will be routed to minimize fuel usage by taking advantage of the winds. The

underprediction caused by the zero wind assumption is therefore likely to be less than the

percentages stated above.

2. Payload variation: Heavier aircraft burn fuel at a higher rate than do lighter weight aircraft.

Thus, the actual fuel usage for a flight is sensitive to the distance flown, the passenger load, the

cargo load, and any extra fuel carried. This increased fuel burn rate for a given mission will

result in higher EINOx as well. As an example, fuel use per nautical mile (nmi) at cruise

conditions for a 747 increases from approximately 36.5 pounds nmi 1 for a 2000-nmi mission

to 44 pounds nmi -_ for a 7000-nmi mission. Increasing the load factor from 70% to 75%

resulted in an increase in fuel use of 0.8% for a B747 (Los Angeles to Tokyo route) and 2.5%

for a B737 (Los Angeles to San Francisco). For a B747 flying the Los Angeles to Tokyo

mission, the fuel use would increase by 13% if the aircraft was carrying the maximum weight

cargo and 7.7% if it was carrying a more typical cargo density (10 pounds ft 3) and was full.

Increasing the average passenger weight allowance (passenger + baggage = 200 pounds) to

230 pounds increased mission fuel use by 1.1%. Since most aircraft do not have the cargo

capacity of a 747, work is still underway to evaluate how this result should be extended to the

global inventory.
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3. Tankering: To evaluate the effects of fuel tankering, a B737 was modeled on flights between

Los Angeles and San Francisco. For this 293 nautical mile flight, the aircraft can carry enough

fuel for four flights. Assuming the aircraft fueled for all 4 flights, the average increase in fuel

use per flight was calculated to be 4%. This is an extreme case since most aircraft fly much

longer distances and tankering is less important.

To better quantify the uncertainties, a systematic analysis is underway to compare calculated fuel

use with data reported by US certificated airlines to the US Department of Transportation (DOT) on

DOT Form 41. This database provides total departures, total fuel use, and total miles flown for

each airline and for each aircraft type used by that airline. Data is reported separately for both

domestic and international travel. Thus, the comparison should help identify the magnitude of

systematic errors for different aircraft types and for different types of aircraft operations (e.g.,
long-range international flights vs. domestic).

2.5 Future Trends and Methodology for Constructing Long-Range
Forecasts

An important goal of the subsonic assessment effort is to predict the atmospheric impacts of future

(i.e., up to 100 years) aviation. Air traffic has grown steadily and is projected to continue to grow

at approximately 5.1%/year over the 1996 to 2015 time period with some regions (e.g., Asia-

Pacific and China) growing faster than that [Boeing, 1996]. Aircraft emissions due to subsonic air

traffic were projected to the year 2015 as part of the assessment of the ozone impact of a fleet of

HSCTs. These forecasts included scheduled [Baughcum et al., 1994] and non-scheduled

(military, charter, former USSR/China) [Landau et al., 1994] air traffic. In that study, passenger

demand was projected based on an average of forecasts by Boeing and McDonnell Douglas using
economic models. Aircraft performance and emissions characteristics for future aircraft were

projected and emission inventories were then calculated.

Since the earlier projections were intended only to provide a reference atmosphere for the

assessment of the effect of the HSCT on the stratosphere, the projections were done simply (e.g.,

all aircraft types were assumed to improve at a constant rate relative to the 1992 "state of the art").

For the assessment of subsonic aircraft effects in the troposphere, a more detailed projection to

2015 is now underway [S. C. Henderson, personal communication]. In parallel with this work,

the European ANCAT project is also forecasting aircraft emission inventories to 2015 [R. Gardner,
personal communication].

Most industry market outlook projections of future air traffic are only made 10- to 15-years into the

future. Longer range forecasts of aircraft emissions, similar to those projected as part of the IPCC

assessments, have not yet been developed by the aviation industry. Two long-range forecasts of

total fleet burden have been made which consider different growth and technology assumptions

[Vedantham and Oppenheimer, 1994; ICAO CAEP WG3, 1995].

Long-range forecasts involve projections of global and regional economics, fuel prices, changes in

aircraft size, technology and fuel efficiency, and changes in engine technology, efficiency, and

emission characteristics. The interplay between air transportation and other forms of transportation

(e.g., rail) and communications (e.g., videoconferencing) must be considered. Approximately half

of air travel is business-related. Thus, sociological questions of how people will do business and

how they will use their leisure time in the future also impact future travel projections. As such,

14



long-rangeforecastscanattemptto bound the problemby consideringa range of simplifying

assumptions and projections. Certainly, any long-range forecasts will be subject to great

uncertainty. For instance, it is doubtful that the current air traffic and emissions would have been

well predicted in 1946. Nevertheless, the SASS project must develop a credible methodology for

forecasting future aviation emissions in order to assist technology and policy decision-makers.

2.6 Summary

Studies of aircraft emissions have demonstrated that global emission inventories of NO x, CO, and

hydrocarbons can be constructed for the current subsonic fleet using reasonable assumptions,

although some of the current fleet inventories are not yet complete, awaiting further improvements

on military, former USSR, charter, and general aviation contributions. Recent progress in

constructing emission inventories is highlighted by the resolution of most earlier differences
identified between the NASA and ANCAT emission databases and by the relatively good

agreement between the jet fuel reported to be produced at refineries and that calculated in the

emission inventories. In addition, the calculation of NO x cruise emissions from engine certification

data has received substantial verification by comparison to a growing body of in situ measurements

of aircraft NO x.

A number of the more subtle features of the gaseous emission inventories have been scrutinized

recently. For instance, seasonal variations in aircraft emissions have been characterized and have

been found to be of relatively small amplitude in all regions except the North Atlantic where

summer emissions are up to 35% larger than winter emissions. In addition, approximately 17% of

subsonic aircraft emissions are estimated to be released in the lowermost stratosphere, where gas

residence times are potentially much longer than in the upper troposphere. In order to improve the

estimate of the stratospheric release a more accurate treatment of tropopause heights is required,

however.

Global inventories for soot particle emissions remain to be constructed. Large differences in soot

emissions between older and newer engine technologies are observed and need to be reflected in

the global inventory. At first glance, smoke number certification measurements appear to provide a

reasonable basis for constructing a cruise soot emission inventory; however, the precise relation

between smoke measurements and in-flight soot emissions is not straightforward and relatively

little data now exist with which to construct a methodology.
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Table 2-1. Emission indices in units of grams emission/kilogram fuel for 1992 and 2015.

Emission 1992 2015

Carbon Dioxide (C02)

Water (H20)

Sulfur Oxides (as sulfur dioxide, 802)

3155

1237

0.8

3155

1237

0.4

16



Table 2-2. Summary of calculated fuel burned and effective emission indices for commercial

aircraft types (based on April 1992 scheduled air traffic) [from Baughcum et al., 1996a].

Airplane Type

Boeing 747-200

Boeing 747-100

Boeing 727-200
DC-10

MD-80

Boeing 737-200

Boeing 747-400

Boeing 767-200

Boeing 737-300

Airbus A300

DC-9

Lockheed 1011

Boeing 757-200

Boeing 747-300

Tupolev 154

Airbus A310

Boeing 767-300

DC-8

Airbus A320

Boeing 727-100

Small Turboprops
MD-11

Boeing 747-SP

Large Turboprops

Boeing 707

Ilyushin 62

Medium Turboprops

Boeing 737-400

Fokker 28

BAE-146

Airbus A300-600

Boeing 737-500

Ilyushin 86
Fokker 100

Tupolev 134

Boeing 747-SR
BAC111

YAK 42

Concorde

Ilyushin 72

Fuel % of Global

(I000 Fuel Burned by

kg day "l) Scheduled
Traffic

26,359 10.40%

22,519 8.88%

21,478 8.47 %

19,140 7.55%

16,122 6.36%

15,563 6.14%

14,779 5.83%

10,084 3.98%

9,827 3.88%

9,745 3.84%

9,035 3.56%

8,843 3.49%

8,052 3.18%

5,772 2.28%

5,610 2.21%

4,682 1.85%

4,536 1.79%

4,397 1.73%

3,653 1.44%

3,107 1.23%

2,975 1.17 %

2,841 1.12%

2,573 1.01%

2,126 0.84%

2,101 0.83%

1,974 0.78%

1,944 0.77%

1,787 0.70%

1,680 0.66%

1,548 0.61%

1,539 0.61%

1,497 0.59%

1,264 0.50%

1,003 0.40%

846 0.33%

673 0.27%

544 0.21%

460 0.18%

404 0.16%

248 0.10%

0-9 km Altitude Band

(g kg "l fuel)

EI EI EI

(NOx) (CO) (HC)

9-13 km Altitude Band

(g kg "1 fuel)

E1 E1 E1

(NOx) (CO) (HC)

14.2 1.4 0.8

13.9 0.4 0.6

8.7 2.4 0.5

13.2 2.0 1.3

10.6 3.3 1.2

7.7 2.9 0.6

13.9 1.0 0.4

12.2 2.6 0.6

9.6 2.9 0.2

14.4 1.2 0.9

8.1 2.3 0.5

15.0 1.9 0.7

12.6 2.0 0.2

14.5 1.9 0.5

8.7 2.2 0.5

13.6 2.0 0.5

13.4 2.3 0.6

5.6 7.0 2.0

12.1 2.0 0.4

7.7 3.7 1.1

Not Applicable

12.4 1.6 0.2

14.4 1.1 0.8

Not Applicable
5.9 8.0 7.9

5.9 5.9 6.0

22.8 22.8 12.8

23.4 22.2 12.1

11.6 5.0 0.8

21.0 17.6 6.5

14.3 5.3 1.5

10.2 6.5 1.4

25.8 8.9 1.6

19.6 6.1 1.3

12.2 15.6 1.3

20.6 18.9 7.0

9.5 9.6 2.7

20.1 19.2 13.5

17.3 10.4 0.9

24.4 15.5 9.6

11.8 4.7 0.7

19.6 6.7 1.4

18.0 11.7 3.0

7.5 43.5 37.2

16.1 6.8 0.5

10.9 7.4 2.2

8.1 4.0 0.2

19.6 9.7 1.5

23.2 30.6 19.9

13.0 4.3 0.0

15.1 39.1 44.7

14.6 34.2 39.5

11.8 5.1 0.6

12.2 15.0 1.1

10.5 6.0 0.5

8.8 8.1 0.8

18.9 10.9 2.0

11.4 12.9 0.8

15.1 38.8 44.7

9.5 25.9 2.5

9.4 9.3 2.9

18.6 19.3 11.1

11.4 13.4 2.3

10.8 7.4 2.2

10.4 27.9 5.4

15.1 38.7 44.5

9.6 3.5 0.2

8.5 1.5 0.4

7.7 0.2 0.0

13.2 2.0 0.4

9.4 3.8 0.2

5.8 8.1 8.0

6.4 11.5 1.6

8.0 2.1 0.5

14.0 2.7 2.7

9.3 2.7 0.6

7.6 3.8 1.1

10.0 26.0 1.8

5.8 8.0 7.9
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Table 2-3. Calculated fuel burned and NOx emissions as a function of month for 1992.

Month Fuel NOx

(10 s kg day "_) (106 kg day "_)

January 3.46 4.20

February 3.59 4.36

March 3.61 4.39

April 3.65 4.45

May 3.73 4.54

June 3.84 4.69

July 3.91 4.79

August 3.92 4.79

September 3.82 4.66

October 3.72 4.54

November 3.73 4.55

December 3.70 4.51

Total 1.36 x 1011

kg year l

1.66 x 109

kg year 1

0.51 Tg

(N) year l
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Table 2-4. Fuel burned and NOx emissions deposited in different geographical regions,

considering all altitudes and the 9-to 13-kilometer altitude band.

Geographical

Region

Northern Hemisphere

Southem Hemisphere

Continental US

Europe

North America

North Atlantic

North Pacific

Latitude Longitude

Range Range

(degrees) (degrees)

0-90N 180W- 180E

90S-0 180W- 180E

25N-49N 125W-70W

37N-70N 10W-25E

25N-70N 125W-70W

30N-70N 70W-10W

30N-65N 120E- 125W

Percent of global emissions

occurring within altitude band

All

Altitudes

Fuel NOx

94 94

6 6

28 28

17 17

30 29

7 7

9 10

9 to 13

kilometers

Fuel NOx

60 57

4 4

15 13

9 8

16 15

6 7

6 7
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Table 2-5. Calculated contribution of NO, emissions from different air traffic components,

considering all altitudes and the 9- to 13-kilometer altitude band. (Percentages are based on the
fuel burned and emissions calculated.)

Fuel NOx

All Altitudes

Charter

Military

Non-Scheduled (former Soviet Union and China)

Scheduled

4.9% 5.1%

19.0% 15,8%

6.5% 4.9%

69.6% 74.3%

9- to 13-Kilometer Altitudes

Charter

Military

Non-Scheduled (former Soviet Union and China)

Scheduled

4.6% 5.2%

15.5% 13.9%

9.3% 7.2%

70.6% 73.7%
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Figure 2-1. Emission indices and smoke number as a function of fuel flow for a CFM56-2-C5
combustor. The points on the solid line identify measurements at sea-level static conditions. The
points on the dotted line were calculated for an altitude of 35,000 feet and a speed of Mach 0.8
using the sea-level static measurements corrected for installation effects and ambient conditions.
(The lines are shown for visualization only.)
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Figure 2-2. Particle size distribution measured in an altitude chamber immediately behind a test
engine under cruise conditions at altitude 9.1 krn [Howard et al., 1996]. Open circles represent
particle concentrations (number per cm 3) divided by particle diameter.
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Figure 2-3. Aerosol emission indices for a number of subsonic aircraft as measured in the wakes

of these aircraft by instrumentation aboard the NASA T-39. Data are given for two commercially

operated MD80 aircraft (MD80-1 and MD80-2); the NASA Langley B737 (LaRC B737); the

NASA Wallops Flight Facility Sabreliner (WFF T-39); the NASA Langley T-38 trainer jet (LaRC T-

38); B757 and B727 commercial carriers; the NASA Ames DC-8 while burning 70 and 500 ppm S

fuel (-L and -H, respectively); and the NASA Langley B757 while burning 500, 70, and 700 ppm

S fuel (-N, -L, and -H, respectively). The nonvolatile particles represent aerosols > 20 nm in

diameter and nonvolatile at temperatures < 190 C. Ultrafine particles are defined as all aerosols

> 4 nm in diameter [B. Anderson, personal communication].
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Figure 2-4, Schematic of emission inventory calculation.
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3. UNDERSTANDING THE EFFECTS OF AIRCRAFT EMISSIONS

The aircraft emission inventories presented in the preceding chapter must be added to and

compared with other sources of gases and particles in the atmosphere in order to accurately assess

aircraft impacts. In addition, a relatively complete understanding of the physical and chemical

processes linking various emitted species with ozone and climate needs to be developed as the

foundation for numerical prediction efforts. In this chapter we summarize the progress made in

understanding the effects of aircraft emissions both in terms of perturbations to ambient levels of

gases and particles and in terms of impacts on specific atmospheric processes. Table 3-1

summarizes the estimated range of perturbations from the subsonic fleet in areas of heavy traffic.

The foundations for these estimates are detailed in the following sections.

3.1 Near-Field Effects

Emissions from individual aircraft are initially highly localized within the aircraft's exhaust plume

and wake. Concentrations of combustion products in plume/wakes are typically much greater than

the corresponding ambient concentrations. These high concentrations do not persist very long,

however, since plume/wakes rapidly expand and mix with the surrounding atmosphere on time

scales of minutes to hours. Plume/wake dispersion time scales are substantially less than typical

atmospheric lifetimes of exhaust species, which are on the order of days to weeks. Accordingly,
the chemical and climatic effects of aircraft exhaust are expected to be manifest primarily during the

time period following plume/wake breakup. Based on this expectation, aircraft emission

inventories, as described in Chapter 2, have been constructed by simple dilution of the aircraft

plume at the altitude of injection, with no chemical changes taking place, into a 1° longitude by 1 °

latitude by 1 km altitude grid.

The potential for important chemical changes to take place in short-lived aircraft plume/wakes has

been actively investigated. Interest in this area is driven by recognition of the fact that a number of

non-linear chemical and microphysical processes, which do not typically proceed under the low

concentration conditions of the background atmosphere, may occur in species-rich plume/wakes.

Such plume/wake processes may lead to global-scale effects if they result in irreversible changes

(at least on the order of days to weeks) in exhaust composition. The three plume/wake processes
that have attracted the most attention are conversion of NOx to inactive forms of nitrogen,

formation of large numbers of small diameter aerosol particles, and formation of ice and droplets.

Conversion of emitted NOx to less reactive nitrogen oxides in the plume can potentially reduce the

effect of these emissions on ozone. The near-field region has been modeled with NOx/SOx/HOx

chemistry coupled to fluid mechanical calculations of the exhaust mixing and dynamics [Miake-Lye

et al., 1993, 1994; Quackenbush et al., 1993; Karcher, 1995; Danilin et al., 1994]. Such

calculations indicate that relatively small amounts of NOy deposited at the point of wake break-up

are in the form of nitrous acid (HNO2) or nitric acid (HNO3), the bulk remaining in the form of

NOx as emitted. Measurements in the wake of the ER-2 [Fahey et al., 1995b], the Concorde

[Fahey et al., 1995a], and several commercial subsonic airliners [Arnold et al., 1992; Zheng et al.,

1994] provide field experimental support for the modest conversion of emitted NOx to other

species.
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Unlike theNOxconversioncase,whereminimalconversionis found in the near-field, the fate of

sulfur compounds is significantly affected by near-field processes. Plume/wake model results

have shown that a large number of small particles can form via binary homogeneous nucleation of

sulfur compounds [Miake-Lye et al., 1994; K_cher, 1995; Zhao and Turco, 1995; Brown et al.,

1995]. This has been confirmed by measurements in the Concorde plume and in a number of

subsonic aircraft plumes, which show that large numbers of small, persistent particles are rapidly

formed in the engine or in the plume [Fahey et al., 1995a, b; Anderson [personal communication];

Schumann, 1996; Whitefield et al., 1996]. The creation of numerous small particles, rather than

condensation of aircraft-emitted SO2 onto existing large particles, will result in greater ambient

aerosol surface area for catalyzing heterogeneous chemistry. In order to quantify the surface area

of the aircraft-derived aerosol, a rather complete understanding of the sulfur oxidation, gas/particle

condensation, and particle coagulation and agglomeration processes is required. The dynamical

details of the wake break-up dictated by wind shear and ambient turbulence, as exemplified by

Lewellen and Lewellen [1996], may be expected to have a strong influence on the impact of the
various competing microphysical processes.

Currently, a major difficulty exists in understanding quantitatively the process of plume sulfur

oxidation. In particular, relating inferred particle mass of the small particles to percentages of

oxidized fuel sulfur remains problematic; a number of measurements indicate that greater than 10%

of the fuel sulfur is converted to sulfate while plume models predict that only 1 to 2% of the sulfur

should be oxidized in the plume/wake. Large sulfate conversions have been observed behind the

Concorde [Fahey et al., 1995a, b] and behind a number of subsonic aircraft sampled during the

recent SUbsonic aircraft: Contrail Cloud Effects Special Study (SUCCESS) mission [Miake-Lye,

personal communication]; Anderson, personal communication]. Work is underway to identify the

mechanism for rapid sulfate production. The possibilities include heterogeneous oxidation on

particles in the plume and SO3 production in the engine. The global-scale implications of the
higher levels of sulfur conversion are discussed in Section 3.2.1.5.

Regardless of their initial size, particles produced in aircraft plumes may serve as nucleation sites

for water and ice clouds, which in turn affect the Earth's radiation budget. The frequent

occurrence of visible contrails attests to the importance of near-field nucleation processes.

Furthermore, clear differences are observed in exhaust emission particle size distributions,

particularly in the small size regime, between those measured immediately behind the engine

exhaust nozzle and those measured in situ several kilometers back in the plume [Hagen et al.,

1994; Hagen and Whitefield, 1996]. However, relating the genesis of cloud droplets to specific

exhaust species has proven to be challenging because exhaust particles have varying abilities to

form droplets when exposed to increasing relative humidity. Particles that form droplets at high

water supersaturation are classified generally as condensation nuclei (CN), however, under typical

upper troposphere conditions it is the small subset of particles that can deliquesce (i.e., become

liquid by absorbing moisture for the air) at humidities with respect to water that are less than unity,

termed cloud condensation nuclei (CCN), that play a critical role in cloud formation. Another

subset of particles called ice nuclei (IN), on which vapor may be deposited directly in the solid

form or which nucleate ice in supercooled droplets, may play an important role in cirrus cloud

formation under some temperature and humidity conditions.

In general, soot is hydrophobic and a poor candidate for cloud or ice nucleation. However,

aviation fuel contains varying amounts of sulfur, which is oxidized to form H2SO4. Laboratory
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studiesshow that this acid canbe adsorbedonto the soot particlesto increasetheir hydration
potential[Rogaskiet al., 1996a; Wyslouzil et al., 1994]. In support of this notion, Hagen et al.

[1992] report that, in ground sampling of exhaust from turbo-prop engines on a King Air aircraft,

particles selected from the peak of the soot distribution (34 nm) contained about 10% soluble mass

fraction indicating significant soot hydration. The same researchers report similar soluble mass

fractions for aerosols sampled in aircraft plumes at cruise altitudes [Schumann, 1995]. This is

consistent with laboratory measurements made by the same group [Whitefield et al., 1993], but at

odds with in situ observations by others. For example, the Whitefield et al. [1993] laboratory

flame experiments indicate that about 35% of jet exhaust particles have sufficient hydration

properties to be effective CCN at 1% supersaturation. In contrast, for similar supersaturations,

Hudson et al. [1991], found CCN/CN ratios of <1% in smoke from open combustion of JP-4 fuel

and Pitchford et al. [1991] measured a ratio of about 1% in the near-field exhaust plume of a

Sabreliner aircraft at 2600 m altitude. Likewise, Busen and Schumann [1995] observed no visible

difference between the contrails of two engines burning low (2 ppmv) and normal (250 ppmv)

levels of sulfur. These observational differences may be due to variations in sampling

technique/instruments or flame/engine operating conditions (i.e., ambient vs. high pressures), but
could also arise from differences in meteorological conditions and/or in fuel sulfur content

[Whitefield et al., 1993], which would affect the formulation of sulfuric acid particles from

homogeneous binary nucleation. Uncertainties in the understanding of near-field nucleation

processes likely translate to uncertainties in the climatic effects of aircraft exhaust on clouds.

Discussion of these larger-scale radiative forcing effects is presented in Section 3.2.3.

3.2 Regional and Global-Scale Effects

Following dispersal of an aircraft plume and wake, the exhaust species act to enhance ambient

levels of gases and particles and contribute to, or modify, ongoing chemical and radiative transfer

processes. The degree to which aircraft exhaust can exert an influence on the atmosphere is largely

determined by the magnitude of the perturbations to ambient levels and the effects of those

perturbations on critical chemical and/or climatic processes. Specific locations of aircraft emissions

are also important as indicated by the significant difference in residence time between the upper

troposphere and lower stratosphere (a few weeks vs. a year or more). In the following
subsections we examine the current understanding of aircraft effects on the regional and global-

scale. Unless otherwise stated, the effect is from simple dilution of the aircraft exhaust to the

global (or model grid) scale assuming that no chemical conversion has taken place in the wake.

3.2.1 PERTURBATIONS TO AMBIENT LEVELS

3.2.1.1 NOx

The primary form of the nitrogen oxides emitted to the atmosphere is NO. NO is an important

exhaust product from all forms of combustion including fossil fuel and biomass and is generated

from bacteria in soils as well as by electrical activity in the atmosphere. Once in the atmosphere

NO undergoes rapid interconversion with NO2; the sum of these two species is referred to as NOx

(NOx = NO + NO2). The photochemical balance between NO and NO2 favors NO during the

daytime and NO2 during the nighttime. Although other forms of nitrogen are also released from

the earth's surface (e.g., N20, HCN, NH3), it is primarily NOx that impacts ozone in the
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troposphere[Haagen-Smit, 1951; Crutzen, 1979; Davis et al., 1996]. Since NOx is a key

constituent in ozone formation, it is imperative that its atmospheric sources, fate and chemistry be

well understood. This has been a difficult task because of the extreme variety of its sources and

the intricacies of chemical reactions that describe its fate. For example, NOx emitted to the

atmosphere is slowly converted to species such as PAN, HNO3, peroxynitric acid (HNO4), N205,

RNO3, organic pernitrate (RNO4), and aerosol nitrate [Singh, 1987; Roberts, 1995]. A full

understanding is made further difficult by the fact that many of these products are hard to measure,

have varying lifetimes, and under certain conditions can act as reservoirs that provide secondary
sources of NOx.

Table 3-2 provides a compilation of source strength estimates for NOx. Of the total of about 45 Tg
N yr -1 (1 Tg = 10 9 kg) injected into the atmosphere, some 85% is injected near the surface of the

earth. Because of rather active chemistry and fast removal in this region, only a small fraction of

the surface emissions make it into the upper troposphere (UT). The major direct sources of UT

NOx are from lightning and aircraft emissions. Aircraft emissions of NOx are reasonably well

characterized, while the amount of NOx produced by lightning is poorly defined. Approximately
44% of all NOx emissions from aircraft occur in the 40 to 60°N latitude band. Emissions between

9- to 13-km altitudes in this latitude band account for 27% of global NOx emissions from aircraft.

As is evident from Table 3-2, one of the most uncertain sources of NOx is from electrical

discharges (lightning) with recent estimates (since 1989) ranging from 1 to 220 Tg N yr -1. Recent
reanalyses of old data and new satellite flash count information have been used to conclude that the

magnitude of this source is likely to be between 2 to 12 Tg N yr 1 but cannot be better quantified at

this time [Price et al., 1996; Price and Rind, 1992a, Kumar et al., 1995; Levy et al., 1996;

Bradshaw et al., 1996]. Any study of the NOx injection into the UT from aircraft must be able to

describe this seasonally and geographically highly variable source with reasonable accuracy.

While there are significant uncertainties in the statistics of lightning flashes, the energies dissipated

during cloud to cloud and cloud to ground discharges, and the NOx produced per unit energy

dissipated, it is likely that a large fraction of NOx from lightning is injected in the middle to upper
region of the troposphere. The overall understanding of the lightning source is further confounded

by the fact that large lightning/cloud systems are typically associated with high vertical velocities

resulting in the convective movement of surface emissions upwards to the middle and upper

troposphere. Despite major uncertainties, it is likely that the lightning source of NOx in the UT is 2

to 8 times as large as the aircraft source. However, much of lightning generated NOx is distributed

around the tropics with minimal impacts at mid-latitudes (except in summer), where the aircraft

emissions are most pronounced. In summary, lightning, aircraft emissions, and deep convection

provide significant sources of UT NOx. Their amounts, and seasonal and geographical

distributions are, however, subject to much uncertainty.

Observational attempts to identify and quantify sources of active nitrogen species in the

troposphere nominally collect data on a large number of nitrogen-containing species such as NO,

NO2, HNO3, PAN, NOy, and aerosol nitrate. Of all these species, NO is perhaps the most critical

in ozone formation and the best measured [Davis et al., 1996; Crosley, 1996]. In the UT NOx is

present mainly as NO (NO=-0.7 x NOx at 10 kin) during the daytime. Other reactive nitrogen

species play roles as sinks and reservoirs; in the latter role they sometimes can recycle active

nitrogen [Singh and Hanst, 1981; Singh, 1987; Moxim et al., 1996]. Figures 3-1 and 3-2 show

some typical examples of NO vertical distributions measured in the troposphere, where NO mixing
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ratiosincreasewith altitude. It is alsoevidentfrom thesefiguresthatNO abundanceis extremely
variablethroughoutthe troposphere,but the variability is most pronouncedjust below the
tropopause. A latitudinaldistributionmeasuredduring thePacific ExploratoryMission (PEM-
WestA) suggeststhatthisphenomenonof higherNO aloft to be truethroughoutthetroposphere
(Figure3-3). In oneexperiment(Figure3-2),wherecloudyconditionscausedlightningaswell as
convection,somewhathigherbut similarly distributedmeanNO concentrationswere observed
[Ridley et al., 1994]. Based on results from a number of NASA-sponsored missions, typical

median NO concentrations in the UT are in the range of 50-200 parts per trillion by volume (pptv)

[Bradshaw, 1996; Emmons et al., 1996]. Larger NO concentrations have been observed in several

instances, most notably during winter at high latitudes by a European-sponsored effort [Wahner et

al., 1994]. Identifying the causes of the high variability in UT NO levels is an important area of

research. Certainly, episodic and inhomogeneous sources of NO such as lightning and large-scale

convection of surface emissions deserve substantial scrutiny in this regard.

The relatively high concentrations of NOx in the UT compared to the lower troposphere are

maintained as a result of a combination of factors including direct free tropospheric sources such as

lightning, and the slow removal of NOx, resulting in a relatively long lifetime (3 to 10 days). Data

from PEM-West A and Transport and Atmospheric Chemistry near the Equator-Atlantic

(TRACE-A) demonstrate that the large surface source is not always the major contributor to UT

NOx concentrations. This conclusion is based on comparison of species with differing

atmospheric lifetimes. Figure 3-4 shows a plot of the NOx/propane (C3H8) ratio as a function of

air mass age, indicated by the acetylene (C2H2)/CO ratio, with data segregated by altitude for the

PEM-West A [Singh et al., 1996]. C3H8 has an essentially exclusive surface source (the aircraft

source is insignificant by comparison) and a well defined lifetime that is always longer than that of

NOx. In general, the NOx/C3H8 ratio should be at its highest near the surface source regions and

decline with time (and altitude) because of the shorter lifetime of NOx. Figure 3-4 shows that

exactly the opposite is the case in the upper troposphere (7- to 12-km) in the Eastern Pacific during

the PEM-West A where NOx/C3H8 ratios are the largest. This is only possible if large amounts of

NOx are being directly added into the upper troposphere from sources such as lightning, aircraft,

or the stratosphere.

3.2.1.2 CO2, CO, and Hydrocarbons

Several carbon-containing gaseous species, namely, CO2, CO, and hydrocarbons (HC), are

emitted from aircraft. Among these, the hydrocarbons and CO are the ones most likely to have an

impact on O3/NOx chemistry, while CO2 will contribute to positive changes in radiative forcing.

The contribution of aircraft emissions to background levels of CO2 is readily estimated because jet

fuel usage is approximately 3% of total fossil fuel usage. The overall impact of anthropogenic

activities on atmospheric levels of CO2 has been identified through long-term records of

atmospheric CO2 concentrations [IPCC, 1994]. According to the data, atmospheric CO2 has been

increasing at approximately 1.2 ppm/year over the last 35 years. At this rate of increase, the

atmospheric CO2 concentration is expected to double relative to preindustrial levels by the year

2100 [IPCC, 1994]. The subsonic aircraft fleet is responsible for roughly 1.5% of the currently

observed growth and figures to make a larger contribution over the coming decades.

CO and HC aircraft emissions are estimated to be 0.7 Tg yr -1, and 0.3 Tg yr -l, respectively,

assuming that the military, charter, and former Soviet Union aircraft have emission indices at

31



cruiseconditionssimilar to thoseof scheduled aircraft (as given in Chapter 2). Engine exhaust
studies show that a predominant fraction of the HC emissions are in the form of non-methane

hydrocarbons (NMHC) (engines appear to be net sinks of ambient CH4). Emission fluxes of

NMHCs and CO from other sources have been estimated to be of order 600 Tg C yr -1 and 2500

Tg C yr -l, respectively [WMO, 1995]. Compared to the other sources, aircraft emissions could

perturb the UT air composition by <1 ppbv CO, and <0.1 ppbv NMHC. The perturbation to the

background of CO is small, but may be significant for specific NMHCs depending upon the

partitioning of emissions. Spicer et al. [1994] have shown, for a few engines, that a wide variety

of NMHCs are produced. Unfortunately, there are very little data on either engine NMHC

emission speciation or source strengths of higher molecular weight (>C3) species on which to base
estimates.

3.2.1.3 H20

Aircraft release 1.25 kg of water vapor for every kg of fuel burned [Lee et al., 1994]. Given that

1.36 x 1011 kg of fuel were burned in 1992 (see Table 2-3), aircraft are emitting 1.67 x 1011 kg of

water each year. This can be compared to the tropospheric background water vapor mass of about

1016 kg, or the background water vapor at the height of maximum aircraft emissions (12 km) of

about 1014 kg. Because the water vapor loading due to aircraft is small, the direct radiative effects

are expected to be small (see Section 4.3.2.2). However, as described in Section 3.1 and further

in Section 3.2.3.2, local enhancements of water vapor in the wake and plume can be sufficient to

achieve ice or liquid water saturation and initiate cloud formation. It is these perturbations of cloud

cover that may have the greatest potential for affecting the atmosphere.

3.2.1.4 Soot

As discussed in Section 2.1.2, aircraft emit large numbers of soot-containing particles. Using the

1992 aviation emission statistics given in Chapter 2, and assuming that aircraft engines produce

between 0.03 g and 0.4 g of soot per kg of fuel burned, we calculate that aviation sources are
7

responsible for introducing 0.4 to 5.4 x 10 kg per year soot to the atmosphere. In terms of the

global budget, recent estimates derive values between 10 and 15 Tg for emissions of black carbon

in the form of soot and charcoal emitted into the atmosphere each year by charring of organic

matter during combustion or by condensation from the gas phase in reducing flames [Andreae,

1995; Cooke and Wilson, 1996; Liousse et al., 1996]. Thus, in the worst case, aircraft are only

responsible for <0.5 % of the total global soot emissions. However, the majority of carbonaceous

aerosol sources (e.g., biomass burning, coal burning, and diesel fuel use) are surface based and

may not contribute effectively to upper troposphere/lower stratosphere aerosol burdens. For

example, smoke from the Kuwaiti oil fires did not present a global pollution problem because most

of the particulate matter was removed regionally from the plumes by gravitational settling and

precipitation scavenging [Hudson and Clarke, 1992; Limaye et al., 1992]. Aircraft soot

emissions, on the other hand, are concentrated at altitudes >9 km and are expected to be much

longer lived, indeed, possibly >1 year for stratospheric release. Based on these long residence

times, Pueschel et al. [1992] estimated that all the black carbon aerosol (BCA) present in the

stratosphere can be accounted for by aircraft emissions, assuming a soot E1 of 0.1 g kg -l fuel

burned and 10% of all commercial aircraft mileage is accumulated above the tropopause. Blake

and Kato [19951 reported black carbon aerosol concentrations in the upper troposphere and lower

32



stratospherefrom 90°N to 45°S. Measuredsoot concentrationswere found to be strongly
correlatedwith latitudevs. altitude aircraft fuel consumption data [Baughcum et al., 1993b] and

ranged from a high of 3.35 ng m 3 in the North Atlantic air corridor to <0.15 ng m 3 in the South

Pacific. BCA residence times in the stratosphere were calculated to be between 4 months and 1

year. If this estimate is valid, stratospheric burdens can be expected to increase in direct proportion

to the amount of air traffic routed above the tropopause. However, because carbonaceous aerosol

presently accounts for about 0.01% of stratospheric aerosol loading [Pueschel et al., 1992],

doubling of emissions should not significantly effect heterogeneous chemical processing within the

region, though it may, as discussed later, have some measurable impact upon radiative budgets,

and perhaps on the probability of freezing of the stratospheric sulfate aerosol.

Based upon in situ measurements, Anderson [personal communication]; Schumann [1995]; and

Whitefield et al., [1996] report that commercial airliners emit from 0.2 to 5 x 1015 nonvolatile

(presumably soot) particles per kg of fuel burned. Using the 1992 aviation fuel consumption

statistics (Table 2-3) and assuming that 50% of the fuel is burned within the 9- to 12-km height

regime (i.e., where cirrus cloud typically form), we calculate that aviation is responsible for

injecting from 0.4 to 9 x 1023 soot particles into the upper troposphere each day. Assuming that

the particles have a 10-day lifetime at these elevations and that one-third of them become coated

with sulfuric acid to form active CCN (i.e., particles that will become liquid by absorbing moisture

from the air at humidities with respect to water that are less than unity), we find that aviation

emissions enhance upper tropospheric CCN concentrations by globally-averaged amounts of 0.1 to

2.0 cm -3. Because background CCN concentrations are typically on the order of a hundred per

cubic centimeter [Clarke, 1993; Hofmann, 1993], the aircraft enhanced values, in general,

represent only a small fraction of the CCN present within the upper troposphere. However,

because background aerosols as well as aircraft routes are not uniformly distributed in space,

aircraft emissions may approach levels that are locally significant. For example, Hoinka et al.

[1993] estimate that between 1989 and 1991, aircraft burned an average of 16.6 x 10 6 kg fuel day _

in the upper troposphere/lower stratosphere over the North Atlantic within a box defined by 45°N

to 65°N latitude and 10°W to 60°W longitude. Adopting the statistics and assumptions provided

above, this translates to aviation-related enhancements in CCN densities within the 9 to 12 km

altitude regime of the region of 0.7 to 14 cm -3, which is 7 times our estimate of the global average.

A doubling of air traffic within this corridor may thus have some quantifiable impact upon cloud

processes. In situ measurements in and around the North Atlantic flight corridor provide clear

evidence of this non-uniformity of aircraft emission distributions [Schumann, 1996].

3.2.1.5 Sulfate

In addition to coating the soot particles, the H2SO4(v) produced from jet fuel combustion can,

because the atmosphere is generally saturated with respect to this species, undergo binary

homogeneous nucleation with water to form new particles [Reiner and Arnold, 1993]. Indeed,

model calculations suggest that this process is energetically favored over the heterogeneous

condensation of H2SO4 upon existing soot particles [Miake-Lye et al., 1994]. Moreover, aircraft

exhaust particle size distributions recorded at cruise altitudes and after the emissions have cooled to

near ambient temperature generally show copious numbers of fine and ultrafine aerosols filling in

the distribution at sizes below the reported soot peak of 30 to 60 nm (Figure 3-5). These aerosols

are volatile at <300°C (as are sulfuric acid particles), are 10 to 100 times more abundant than the
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nonvolatile(soot)exhaustparticlesandtheir sizeappearsto be highly dependentupon ambient
temperatureandhumidity,all of whichsuggeststheyarelikely composedof H2SO4[Schumannet

al., 1996; Miake-Lye, personal communication; Anderson, personal communication]. Further

evidence for this argument are the observations by Schuman et al. [1996] and Miake-Lye [personal

communication] that the number density of volatile particles in aircraft exhaust vary proportionally

with the fraction of sulfur contaminant contained in the fuel (Figure 3-6).

Although most of the SO2 released by aircraft combustion is eventually removed from the

atmosphere by heterogeneous processes, it is difficult to quantify the fraction of fuel sulfur immed-

iately sequestered into particles during the jet exhaust/wake vortex regime. Aviation turbine fuel

specifications [ASTM, 1996] allow Jet-A fuel to contain up to 3000 ppm by mass of sulfur.

Prather et al. [1992] surveyed fuels from a number of sources and found the sulfur contents to

range from 100 to 2000 ppm and to contain an average of 420 ppm, which represents an El of

0.42 g (S) kg -I fuel burned. Model studies suggest a maximum of 1% of the SO2 produced in jet

combustion reacts with OH in the jet exhaust/wake regime to form H2SO4. If this vapor

immediately condenses to form--based on the size constraints placed on the particles by the

measurements of Fahey et al. [1995a, b]--nominal 16 nm diameter particles of 70% weight

fraction H2SO4, we estimate that aircraft should produce an average of 3.6 x 1015 particles kg -1

fuel burned. By comparison, emission indices of 5 to 500 x 1015 volatile (presumably sulfuric

acid) particles kg -_ fuel have been observed in aircraft plumes within the upper troposphere and

lower stratosphere [Fahey et al., 1995a, b; Miake-Lye, personal communication; Anderson,

personal communication] (e.g., Figure 2-3). Clearly, the models are missing some relevant details

regarding the oxidation of fuel sulfur in jet engines.

The effect of aircraft sulfate aerosol emissions upon atmospheric processes (e.g., cloud processes,

heterogeneous chemistry, and radiation transfer) depends upon the equilibrium size and number

density of the particles. For the newly formed, small diameter, exhaust particles the direct

extinction of solar radiation is expected to be negligible in comparison to that of contrails (see

Section 3.2.3). And, although the presumed 16 nm diameter particles observed by Fahey et al.

[1995a, b] and others [Miake-Lye personal communication; Anderson, personal communication] in

young aircraft plumes represent a fairly large total surface area and may influence heterogeneous

processes in the upper troposphere and lower stratosphere (see Section 3.2.2.3), they are, in

general, too small to affect cloud formation and microphysical processes. However, in situ

observations suggest that as jet engine emissions age, the volatile CN coagulate to form particles as
much as twice as large [Hagen et al., 1996] which are, in turn, much more effective CCN.

Doubling the particles' size to produce CCN effectively reduces their number by eight-fold. Thus,

the observed emission indices of 5 to 500 by 1015 CN kg -1 fuel burned [Fahey et al., 1995a, b;

Miake-Lye, personal communication; Anderson, personal communication] translate into 0.6 to 60

x 1015 CCN kg -l fuel burned. Following the same arguments as presented above for soot

particles, we estimate that aircraft introduce 0.1 - 10 x 1024 new particles into the 9- to 13-km

height band each day, which, assuming a 10 day atmospheric lifetime, results in a globally
averaged CCN enrichment of 0.8 - 77 cm -3. An enhancement of 5 to 500 cm -3 is calculated for the

North Atlantic region described above. Because background CN/CCN concentrations are typically

several hundred to a few thousand cm -3 [Clarke, 1993; Hofmann, 1993] these enhancements could

have a significant impact on cloud microphysics and heterogeneous chemistry in the upper
troposphere/lower stratospheric region.
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Theaboveestimatesof aircraftparticleemissionsandtheir impactupon atmosphericpropertiesis
highly speculativedueto thescarcityof dataregarding,for example,aerosolsizedistributionsand
emissionindicesundertypicalflight conditions,thefractionof aircraftexhaustsootparticleswhich
becomeactiveasCCN, andtherelativeloadingof CN andCCNin thebackgroundair dueto other
processes.Clearly, focusedresearchis neededto reducetheseuncertaintiesandto improve our
understandingof heterogeneouschemistryandaerosolphysicalprocessesin theatmosphere.

3.2.2 OZONE CHEMISTRY

3.2.2.1 Ozone Tendencies Relative to NOx

The photochemistry of ozone in the troposphere is initiated by the ultraviolet (UV) photolysis of

ozone at wavelengths <315 nm via the formation of a highly reactive photofragment O(1D). Most

of the O(1D) is collisionally deactivated by molecular nitrogen (N2) and/or molecular oxygen (02)

to its ground state (O(3p)) and subsequently reconverted to ozone.

O 3 + hv --) OOD) (1)

O(1D) +H20 -_ 2OH (2)

OOD) + M --_ O(3p) + M (3)

O(3p) + 02 + M -_ O3 + M (4)

A very small fraction of the O(1D), however, reacts with water vapor to generate hydroxyl radical

(OH), an important oxidizing species in the atmosphere. In the presence of sufficient levels of NO

OH readily reacts through a series of reactions involving HCs to produce peroxyradicals (HOE,

RO2 where R = alkyl group). The resulting peroxyradicals react further to form NO2 via:

HO2 + NO --> OH + NO 2 (5)

RO 2 + NO --4 RO + NO2 (6)

NO2 is then rapidly photolyzed to form O(3P) which readily converts to ozone. In the presence of

HCs and CO more than one peroxyradical can be generated for each primary OH and an

accumulation of ozone can take place via this amplification. There are also processes that destroy

ozone and peroxyradicals and these can become dominant under NO-poor conditions.

HOE + 03 ----> OH + 202 (7)

OH + 03 --4 HO2 + 02 (8)

Based on the above chemistry, the net rate of ozone production (P(O3)) can be expressed as a

difference between its formation and destruction rates, depending on the relative sizes of the
formation and destruction mechanisms.

P(O3)= { k5[HOE]+k6[RO2] } [NO]- {k2[O(lD)] [HEO]+k7[HO2] [O3]+k81OH] [03] } (A)

It is clear from equation (A) that NO is a primary species in the formation of ozone and the net rate

of ozone production can be positive or negative.

Figure 3-7 is used to illustrate this point for the region of 500N in July at 10 km altitude (note: a

similar calculation is performed in Section 4.2.2.1 as a test of model treatments of chemical

mechanisms). The Y-axis shows the net ozone production rate [P(O3)] as a function of NOx under

a variety of assumed conditions stated in the legend. Below a certain NOx threshold (150 to 300
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pptv),P(O3)increaseswith increasingNOx;a minimumof about15pptv NOx is requiredfor net
ozoneproductionto occur.After reachinga peak,P(O3)declinesas NOxfurther increases.This
declineis largelyprecipitatedby thefact thatNOx itself becomesaneffectivesinkof free radicals
andoddoxygenvia reactionssuchas

OH+NO2(+M) ----,HNO3(+M)
HO2+NO2(+M) _ HNO4(+M)

(9)
(lO)

In reality changes inFigure 3-7 is derived from a model using constant background conditions.

NOx concentration are associated with changes in other species (e.g., NMHC, H20, PAN) that

have an effect on ozone production. Figure 3-8 shows a plot of instantaneous P(O3) vs. NOx for

the actual field conditions observed over the Pacific during PEM-West A (September/October

1992). The data in Figure 3-8 are restricted to 30-40"N latitude, 10- to 12-km altitude and a solar

zenith angle of 30 to 60* (peak daytime). Although the data are limited, it appears that P(O3)

continues to increase up to the highest levels of NOx measured (i.e., 400 pptv).

As shown in Figures 3-1 and 3-2, NOx mixing ratios typically rise with altitude in the troposphere

with mean mixing ratios of 100 to 200 pptv occurring in the upper troposphere (10- to 12-km).

However, larger abundances are frequently encountered. These higher levels are often associated

with lightning or lofting of pollutants from the surface during periods of convection. For example,

the upper altitude mixing ratios exceeding 1 ppbv of NO that are shown in Figure 3-2 were due to

lightning activity. To the extent that the background UT is poorly characterized and studied, it is

hard to predict the sign of ozone response to an addition of UT NOx from subsonic aircraft. It is

likely, however, that the background tropospheric NOx levels are generally low enough that

addition of NOx would tend to enhance the net production rate of ozone. One consequence of the

non-linear ozone response to NO is that 2-D models that zonally average the NOx concentrations

may have difficulty predicting the correct ozone response. Further discussion of model capabilities

is given in Chapter 4.

3.2.2.2 Role of Non-Methane Hydrocarbons

As illustrated in the last section, the ozone response to NOx perturbations is linked to alkylperoxy

(RO z) and hydroperoxy (HO2) radical reactions. Aircraft exhaust is known to contain a large

number of C2 to C17 species, although the relative amounts are not well established [Spicer et al.,

1994]. Depending on their abundances, highly reactive aircraft NMHCs could suppress OH

concentrations and sequester NOx in the form of organic nitrates and pernitrates (RNO3, RNO4,

RCO3NO2) thereby influencing the NOx/HOx chemistry of the UT [Singh and Hanst, 1981;

Roberts, 19951. Although the impact of NMHCs from subsonic aircraft emissions is likely to be

small, no serious effort to accurately simulate these effects has been undertaken to date. A model

sensitivity study on NMHC chemistry is included in Section 4.2.3.2.

3.2.2.3 Heterogeneous Chemistry

Heterogeneous interactions of gas-phase species with aerosol and cloud particles can modify the

partitioning of chemical families and affect the removal of soluble species. In addition, aircraft

emissions, such as H20, SOx and NOx, may change the composition and surface area of existing
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aerosolandcloudparticlesor provide new kinds of surfaces, such as soot, that might support

heterogeneous reactions.

Because NOx injection from aircraft is potentially a large chemical perturbation to the upper

troposphere, heterogeneous reactions that repartition the nitrogen family will play a role in

determining the overall impact. The hydrolysis of N205,

N205 + H20 _ 2 HNO3 (11)

which has been characterized in the laboratory, converts an easily photolyzed NOx reservoir

species into a more stable species that is subject to wet removal processes. Calculations by

Dentener and Crutzen [1993] showed that including the hydrolysis of N205 on tropospheric

aerosol particles significantly decreases the concentration of NOx, by as much as 50% on a yearly

global average basis. This brings the calculated NOx concentrations and nitrate wet deposition

amounts into better agreement with observations. The current assessment models include the

hydrolysis of N205. As discussed in Section 4.2.3.2, Case 5, including this reaction slightly

increases the sensitivity of the ozone response to aircraft emissions by reducing the background

concentration of NOx.

Lack of knowledge about the composition of upper tropospheric aerosols and about whether

composition effects heterogeneous reaction rates introduces some uncertainty into the assessment

of subsonic aircraft impacts. Particles collected on wire impactors in the upper troposphere are

predominately (91-94%) sulfur-containing [Pueschel et al., 1994; Sheridan et al., 1994], and

mostly (>70%) volatile [Hofmann, 1993; Clarke, 1993]. Sulfate aerosol in the troposphere is

partially neutralized by ammonium; the degree of neutralization decreases with altitude because

ammonium sources are mainly ground-based. Volatility measurements on upper tropospheric

aerosol have been utilized to provide an estimate of the NH4÷/SO4 -- molar ratio of 0.1 to 0.3 (0

indicates sulfuric acid and 1 indicates ammonium bisulfate, NH4HSO4) [Clarke, 1993]. In the

lower free troposphere, chemical analysis indicates a molar ratio closer to 1 [Huebert and Lazrus,

1980].

The Dentener and Crutzen model [1993] assumes that all tropospheric aerosol is ammonium

bisulfate and uses an uptake coefficient for the hydrolysis of N205 of 0.1, independent of

temperature. This uptake coefficient is based on laboratory measurements taken on cold,

concentrated sulfuric acid solutions representative of stratospheric sulfate aerosol. Recent

laboratory work suggests that the uptake coefficient is in the range of 0.02 to 0.04 at room

temperatures on ammonium sulfate and dilute sulfuric acid surfaces representative of boundary

layer tropospheric aerosols [Hu et al., 1996]. Presumably, the uptake coefficient on upper

tropospheric aerosols lies between these limits. However, this may represent a minor adjustment

to model calculations. A sensitivity analysis conducted by Dentener and Crutzen [1993] using an

uptake coefficient of 0.01 produced only small changes to the calculated NOx concentrations.

Ice particles in cirrus clouds may provide a substrate for heterogeneous reactions, such as the

hydrolysis of N205 or the reactions that activate chlorine on polar stratospheric cloud (PSC)

particles. They may also provide a sink for NOy species such as HNO 3 and HNO 4 [Li et al.,

1996]. Whether the chlorine reactions play a role in the upper troposphere depends on the

availability of the stratospheric chlorine reservoirs hydrogen chloride (HC1) and chlorine nitrate

(C1NO3) which in turn depends on the exchange of air between the stratosphere and troposphere, a

poorly understood atmospheric process. Heterogeneous reactions on cirrus cloud particles are not
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includedin modelsbecausethe surfaceareaof cirrus cloudsis not well known. In addition,
increasingcirruscloudcoveragedueto aircraftis poorlyquantified(seeSection3.2.3.4), making
theassessmentof thisparticularaircraftimpactdifficult.

Otherheterogeneousreactionsbesidesthe hydrolysisof N205 may affectthe chemistryof the
uppertropospherebut arenot well enoughcharacterizedto be includedin models. In particular,
inorganicfree radicals,suchas nitrogentrioxide (NO3) andOH, are importantoxidants in the
aqueousphase.NO3reactsquickly withCI, OH-,andHSO3-in solution,andthesereactionsmay
affect HOx levels and sulfur conversion[Exner et al., 1992]. The mass accommodation

coefficients for OH and HO2 on sulfuric acid solutions have been measured to be large (>0.2) and

this uptake may promote condensed phase chemistry as well as providing a sink for gas-phase

HOx [Cooper and Abbatt, 1996; Hanson et al., 1992]. Experiments on reactions of SO4- have

shown that the reaction rate increases rapidly with increasing ionic strength, and these results have

been explained with an ion-pair model [Bao and Barker, 1996]. Although concentrations of SO4-

are low in the atmospheric condensed phase, the effect of high ionic strength on reaction rates may
need to be considered.

The direct injection of soot particles by aircraft into the upper troposphere and lower stratosphere

provides surfaces that may catalyze heterogeneous reactions both in the near-field and in the

atmosphere at large. In the near-field, the observation of visible contrails implies that some

fraction of soot particles serve as nucleation sites for water-based aerosols [K'_cher et al., 1996].

The mechanism for activation of the initially hydrophobic soot surface for water uptake is not yet

understood. Laboratory experiments have shown that the adsorption of H2SO 4 on soot allows

hydration to occur [Wyslouzil et al., 1994; Rogaski et al., 1996a]. But, the calculated gas-phase

concentration of H2SO4 in the near-field is not high enough to yield the requisite soluble mass

fraction [K_cher et al., 1996], although field measurements indicate that the plume models

underestimate SO2 to H2SO4 conversion [Anderson, personal communication]. Other suggestions

of soot activation by heterogeneous interactions with SO2 or HNO3 [K_cher et aI., 1996] are not

consistent with laboratory measurements of low uptake coefficients [Rogaski et al., 1996a].

In the laboratory, the reaction of HNO3 on soot has been observed to produce NO and NO2

[Rogaski et al., 1996b] and possibly provides a heterogeneous mechanism for converting NOy

back into NOx. This reaction, along with the reaction of NO2 on soot to produce NO [Tabor et al.,

1993; Rogaski et al., 1996a], has been suggested to significantly increase ambient NOx [Lary et

al., 1997]. These reactions counteract the hydrolysis of N205 and may increase the impact of NOx

injection by aircraft. However, one important issue needs to be resolved. Soot particles in the

atmosphere collide with gas-phase species and undergo coagulation with aerosol particles and may

not support the heterogeneous chemistry observed on clean soot surfaces in the laboratory. For

example, soot particles collected on wire impactors in the lower stratosphere tend to have sulfate

coatings, although soot collected in the upper troposphere does not [Sheridan et al., 1994].

A small percentage of subsonic aircraft emissions, on the order of 17% [Baughcum, 1996bl, are

injected directly into the lower stratosphere. One issue is whether NOx and SOx emitted from

aircraft can enhance the activation of stratospheric chlorine. Laboratory studies have found that the

reaction of HC1 and HNO 2 on sulfate aerosols may provide a significant chlorine activation

mechanism [Zhang et al., 1996]. However, a quantitative evaluation of this mechanism requires a

detailed understanding of the plume evolution of HNO 2 and sulfate particles.
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Anotherissueiswhetherthedirectinjectionof watervapor,NOx,andparticlesby aircraftinto the
lower stratospherewill increasethe temporaland geographicalextentof PSC formationor the
fraction of PSCs with NAT or ternary composition, thus increasing the surface area available for or

rates of heterogeneous activation of ozone destroying species. Because the microphysics of PSC

formation is not well understood, and because 2-D representations do not easily accommodate

zonally variable effects such as clouds, assessment models for the supersonic fleet are only just

starting to include PSCs [Considine et al., 1996]. Sensitivity studies with simplified PSC

parameterizations based on temperature thresholds show that HSCT emissions increase the surface

area and time duration of PSCs [Stolarski et al., 1995]. 2-D models which include microphysical

representations of PSC formation also show increases in PSC surface area, for example, by as

much as 40% in the winter Northern Hemisphere [Pitari et al., 1993; De Rudder et al., 1996;

Tie et al., 1996]. Increased PSC surface area leads to more chlorine-catalyzed ozone destruction

in polar regions, but also reduces the sensitivity of ozone levels to HSCT perturbations by

removing NOy [Stolarski et al., 1995]. Further modeling work on PSC microphysics will reduce

the uncertainty in these predictions.

Some of the difficulty in parameterizing PSCs arises from the numerous open questions in

understanding PSC microphysics. Even the composition of Type I (non-water ice) PSCs is

currently a subject of debate. Originally thought to be nitric acid trihydrate (NAT), observational

evidence suggests that some Type I PSCs may be ternary H2SO4/HNO3/H20 solutions [Dye et al.,

1992; Toon and Tolbert, 1995]. In addition, although NAT is the thermodynamically favored

composition, nitric acid dihydrate has a lower activation energy for homogeneous nucleation and

may be more likely to form in the stratosphere [Worsnop et al., 1993; Disselkamp et al., 1996].

The composition of Type I PSCs determines their vapor pressure and thus affects modeling of the

partitioning between gas and condensed phase for species such as HNO3 and H20. Moreover,

real atmosphere PSCs are likely complicated non-equilibrium phenomena containing a number of

HNO 3- H20 - H2SO 4 mixtures.

The mechanism of PSC formation is also a topic of laboratory research. Type I PSCs were

formerly thought to condense on frozen sulfate aerosol particles. However, laboratory

experiments have shown that neither sulfuric acid solutions nor ternary solutions are likely to

freeze under Type I PSC conditions [Anthony et al., 1995, 1996; Beyer et al., 1994; Koop et al.,

1995; Carleton et al., 1996], and that, if frozen, sulfuric acid does not nucleate NAT [Iraci et al.,

1995]. The issue of crystalline PSC formation remains unresolved and suggests that

microphysical models may need to be modified in the future. Although the specific mechanism of

PSC formation is important for gas/condensed phase partitioning, it may not be critical for chlorine
activation.

3.2.2.4 Ozone Trends

Although models have been extensively used to estimate the perturbation to UT NOx and 03 from

subsonic emissions, little direct evidence of NOx or O3 increases from past and current aircraft

fleets is available. Long-term records are not available for NOx except in polluted locations but

measurements of tropospheric ozone have been made since the late 1960s. Information on trends

in ozone near the tropopause is available from ozonesonde stations, the majority of which are

located at middle and high latitudes of the Northern Hemisphere. Measurements from

Stratospheric Aerosol and Gas Experiments (SAGE) I and II provide trend information only above
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15km for mid-latitudesandabove18 km for the tropics [McCormick et al., 1992; Wang et al.,

1996]. Trends derived from the sonde data are discussed in Logan [1994], Miller et al., [1995],

and Tarasick et al. [1995] and are reviewed in WMO [1995].

Figures 3-9 and 3-10 show O3 trends as observed from long term surface and sonde data

respectively. Detailed comparison of these datasets reveals substantial differences. For instance,

large increases are found for two stations in Europe (,,2% year _ throughout the troposphere for

1970-91), while there appears to be no long-term trend over Canada and only a small (<1% year 1)

increase over the east coast of the United States in summer. In addition, increases are found only

below 6 km at the Japanese stations. Most stations observe a trend shift since 1980. In particular,

ozone values over Germany have leveled off since the early 1980s, there is no increase over the

eastern United States since 1980, and the Canadian stations all show decreases in tropospheric

ozone since 1980. These conclusions are unchanged with the inclusion of data up to December

1995 in the trend analysis [Logan, personal communication]. In summary, the following

observations can be made:

• The sonde stations at middle and high latitudes show a decrease in ozone in the lower

stratosphere, with a maximum trend of -0.8 to -1.2% year t near 90 mbar from the early 1970s

to 1991. The ozone decreases extend from about 30 mbar down to the tropopause.

• There are significant station to station variations in the trends in the troposphere. In the lower

troposphere, there are indications of ozone increases over the past 25 years in parts of northern

mid-latitudes, but the increase appears to have leveled off since the mid-1980s over Europe and
the United States.

• During the period of 1970 to 1991, there are no systematic indications of ozone changes near

the tropopause level (-_200 mbar) in the upper troposphere. The natural variability of ozone is

highest near the tropopause leading to substantial uncertainty in the derived trends.

The lack of a discernible trend in UT ozone places a limit on the possible impact of aircraft

emissions assuming no other sources of a trend in UT ozone. From the trend data alone an

approximate limit of _<1% year 1 can be placed on the potential size of the aircraft impact on UT

ozone. Given that the likely trend due to subsonic emissions is in the range of 0.05% per year (see

Table 4-6), it appears that the uncertainty associated with the trend data is too large to effectively

constrain the model predictions.

3.2.3 RADIATIVE FORCING

There are a number of mechanisms by which aircraft emissions can potentially alter climate, and

essentially these can be divided into direct and indirect effects. Direct effects include the radiative

perturbations produced by the ice crystals comprising the contrails in the UT, and by radiatively

active combustion gaseous species and aerosols, such as carbon dioxide and soot particles,

respectively. Indirect effects can also be considered in two categories: microphysical modifications

to natural cirrus through the conditioning of the upper troposphere with water vapor and cloud-

forming nuclei (potentially both CCN and ice nuclei (IN)), and changes in atmospheric ozone

chemistry processes due to NOx injection. The relative importance of direct and indirect radiative
effects is discussed below.
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3.2.3.1 Clear Sky Effects

Aircraft gaseous emissions can influence climate directly by effecting both solar and terrestrial

radiation. H20, CO2, NOx, and SO2 all have longwave absorption bands, and H20, NO2, and

SO2 absorb short-wave radiation as well. Indirect radiative changes may result from modifications

to the ozone balance in the UT caused by NOx injections. Consideration of the indirect effects is

complicated by the feedbacks between chemistry and climate. For instance, 03 chemistry is

sensitive to UV flux [Clarke 1993], which, in turn, is dependent on ozone abundance.

Observing the climatic effects of these aircraft emissions is difficult for two reasons: the radiative

forcing associated with these emissions is relatively small, and the aircraft contribution compared

to the natural or other anthropogenic sources for these gases is also small, in general. Specific

calculations of aircraft climate effects are described in Chapter 4.

3.2.3.2 Direct Cloud Effects of Contrails

The formation of cirrus clouds derived from contrails, even if persisting only momentarily, is the

most obvious impact of jet traffic, and represents one of the potentially important climate impacts.

From a radiative transfer standpoint, however, it is by no means certain whether the net impact

(effect) of contrail cirrus will be to contribute to the cooling (albedo) or warming (greenhouse) of

the earth/atmosphere system. Cirrus cloud radiative simulations have established that both the

magnitude and sign of the forcing associated with clouds in the UT depends critically on their

locations and microphysical properties, such as ice crystal size, shape, and concentration, which

are controlled mainly by the cloud layer structure and temperature [Stephens et al., 1990; Takano et

al., 1992; Ou and Liou, 1995]. The overall radiative effect is also determined by the time of day

when the contrail or cirrus forms, how much area it covers, how long it persists, and the albedo

and temperature of the underlying surface.

In general, natural cirrus (with the exception of thunderstorm anvil-cirrus) formation takes place

from the top-down through the precipitation of ice crystals nucleated near the cloud layer top.

(However, the precipitation process may thermodynamically alter the underlying atmosphere,

leading to altered dynamics and new particle generating zones, [see Start and Cox 1985]). The

cloud layer top position is critical because during adiabatic ascent, either on convective or synoptic

scales, it represents the region of coldest temperatures where conditions are most favorable to the

homogeneous freezing of haze particles. In contrast, contrail formation is a binary occurrence:

either the ambient temperatures and humidifies at the aircraft flight level are suitable for

condensation to occur, or they are not and no contrail is formed as the exhaust plume mixes out

with the environment. Contrail persistence requires, according to our current state of knowledge,

that the condensed droplets, or the growing haze particles that preceded them, grow and exist long

enough for homogeneous freezing to occur. Since the UT is always subsaturated with respect to

water as a consequence of the thermodynamic barrier imposed by cirrus cloud formation processes

in which ice crystals grow at the expense of liquid water, all liquid droplets formed in a contrail

will eventually evaporate. Consequently, it is the transience of the liquid phase coupled with

mixed air temperatures colder than about -40°C that allows ice contrails to persist. (The creation of

IN in the exhaust plume could be a factor under warmer conditions where homogeneous nucleation

rates are relatively slow, but large numbers of such particles would probably be needed to produce

a visible contrail.) Similarly, unless the ambient environment is at least saturated with respect to
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ice at the aircraftaltitude,the ice particlecontrailwill also eventuallyevaporate. The fact that
contrailsareoften observedto persist in cloud-freeair, however, demonstratesthat they can
pioneeranenvironmentthatis not quitesuitablefor theformationof naturalcirrus clouds,which
require an ice-supersaturatedenvironmentat all temperaturesand near-watersaturationat
temperatureswarmerthanabout-40°Cin theUT [SassenandDodd,1989].

The manner in which contrails are produced has important microphysical and radiative
consequences.The rapidexpansionandmixing of theexhaustplumebehindtheaircrafthas the
potentialto createan exceptionallylargenumberof minuteice crystalsof -5 to 10 micronsin
diameter,which tend to remainsmall becauseof the strongcompetitionfor the availablewater
vapor supply;if this is so theparticleswould consequentlyhavenegligibleratesof fall. Clouds
composedof suchparticleswould likely havesolaralbedoeffectsthatdominateover their infrared
("greenhouse")effectson radiativetransferin the UT, becauseof the relativelylow absorption
efficienciesfor smallparticlesin theinfrared. However,continuedcontrailice particlegrowth will
eventuallyleadto a balancebetweenthesetwo effects, or to the dominanceof the greenhouse
effect. Thebalanceof theseeffectsalsodependson thetime of day, season,and latitude. Ice
(sphere)diameterslarger than 20 to 30 microns are required for the particlesto approacha
mid-infrared(10-micronwavelength)absorptionefficiencyof unity, but otherfactorssuchaslow
solar zenithangle, multiplescattering,and contrailheight may still favor solar albedoeffects.
Thus,understandingtheevolutionof persistingcontrail microstructureis criticalto assessingtheir
climatic impact, stressingthe need for combined in situ, remote sensing, and theoretical

investigations of effects of contrail particle size to help settle the question of the solar albedo versus

greenhouse competition.

As an example of the unusual structure of persisting contrails, we present in Figure 3-11 a lidar

backscatter height-versus-time display collected during a recent field campaign at high spatial ( 1.5

m height by 0.1 s time) resolution. This example shows a pair of intersecting contrails produced

by commercial air traffic, both approximately 45-min old according to visual inspection. Clearly,

observations of persisting contrails at this scale contain a wealth of information regarding contrail

fine structure which can help illuminate fundamental properties related to radiative impacts. As is

typical, these contrails display a cellular structure, which could result either from the original

vortex structures or from induced convection. It is important to note, however, that despite their

ages, the vertical extents of the contrails are limited to at most a few hundred meters, and are often

only 50-m. This implies that contrail ice crystal fallspeeds, and sizes, can remain relatively small

for extended periods, probably on the order of the 10- to 30-_tm diameter indicated by contrail

corona observations [Sassen, 1991]. Thus this type of remote sensing information indicates that

persisting contrails may contain relatively minute ice particles for extended periods, supporting the

possibility that they may tend to cool the surface through the dominance of the solar-scattering
albedo effect.

Contrail growth and persistence determine the large-scale radiative effects of contrails. These

characteristics are best monitored through satellite remote sensing. Figure 3-13 shows an example

of the development of a cirrus cloud from a contrail during SUCCESS. In this case, the

condensation trail formed from the exhaust of the NASA DC-8 as it flew in a racetrack pattern

(Figure 3-13A) off the coast of California. The next 4-km-resolution infrared image from GOES-9

(Geostationary Operational Environmental Satellite) shows the development of an oval-shaped

contrail in the location of the DC-8 flight track at an altitude of approximately 10 km corresponding
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to a temperatureof -43°C. Only 2 hoursaftertheDC-8 completedits final racetrackpattern,the
contrail is severalpixels wide, more than 10 km across. Other contrails, presumablyfrom
commercialtrans-Pacificflights,arealsoevidentin thevicinity of theDC-8 flight area(Figure 3-
13B). In thesubsequentimages(Figure3-13C-N), theoval contrailcontinuesto grow and fill in
as it passesover the coast,acrossthe SacramentoValley, and over the SierraNevada. At its
maximumsize, this contrailcirrus coversanareaof ~4000km2beforedissipatingover Nevada.
During thisperiod,no othercirrus formedaroundthecontrailindicatingthatthecloudwould not
haveformedwithouttheaircraftexhaust.Thus,therewasasignificantnet increasein cloud cover
over this areadueto just oneplane. Thecontrailinitially formedduring the lateaftemoonover
bright low clouds. When it passedover the clear sky, inland, the sun was almostdown.
Therefore,this contrailhadminimalimpacton thesolaralbedo. Its infraredwarming, however,
was significant,increasingas it passedover the land and reachinga maximumover the Sierra
whenit wasthickestandmostwidespread.

Thisexampledemonstratesthecomplexityof assessinglarge-scalecontrailradiativeeffects. Other
exampleshavealsobeenstudiedin detailby Palikondaet al., [1996]. Most old contrails do not

have easily recognizable shapes like ovals. The irregularity and width of older, linear contrails

obscure their anthropogenic origins. Ground observers can typically identify a contrail only in its

early stages before it grows wider than a few kilometers. At greater widths or later in its lifetime, a

contrail cloud will be indistinguishable from a natural cirrus. To date, direct evaluation of contrail

radiative effects have relied on surface or high-resolution satellite observations of young contrails.

It is clear from Figure 3-13 that such assessments can only provide a lower bound on the contrail

radiative impact. Investigations to determine more representative statistics of contrail growth and

lifetime are continuing under SASS.

3.2.3.3 Indirect Cloud Effects of Contrails

Aircraft engine exhaust that does not form contrails, and contrails that persist and then evaporate,

leave behind enhanced aerosol and moisture fields in the UT that have the potential to alter the

formation and content of future cirrus clouds. (Whether there are significant differences in aerosol

production associated with the dry and wet exhaust chemistries remains to be determined.) It is

clear that the abundant sulfate species aerosols created in the wake of aircraft, composed either of

sulfuric acid, ammonium sulfate, or an admixture with soot, would serve as effective CCN to

create the haze particles that are the precursors of cirrus ice crystals (following their homogeneous

freezing). The question is whether their cloud particle-forming activity, in relation to the

background aerosol in the UT, is of enough significance to alter cirrus cloud content in a radiative

sense. Certainly, the UT is not rich in CCN. If the contrail sulfate aerosol particles are

comparatively large, then radiatively significant alterations to cirrus are possible. This follows

from 1-D model simulations of growing cirrus clouds, which indicate that the CCN size spectrum

can be quite important during the crucial early moments of the haze particle freezing sequence in an

updraft. Since water vapor competition ultimately determines the number concentration (and

subsequent size distribution) of the ice cloud, large CCN-induced early nucleation events both

increase initial ice particle sizes, and decrease their concentrations. The same argument would

apply if relatively effective artificial IN (perhaps from engine metal fragments) were to affect the

cirrus cloud particle nucleation sequence. Such IN could be of importance in relatively weak
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(several cm/s) updrafts. Primarily, it is the relative effectiveness of the aircraft-produced cirrus
cloud particle-forming nuclei that must be understood.

The argument for the effects of water vapor emissions depends critically on the evolution of

contrail ice particle sizes. Simply put, if crystals grow large enough to undergo significant fallout,

then persisting contrails will dehydrate the UT by removing not only the emitted water vapor but

also the excess taken from the (ice-supersaturated) environment during contrail development.

Conversely, if only relatively minor vertical contrail depths are characteristic, or non-contrail-

producing water vapor emissions are more significant, then a humidification of the UT must occur.

3.2.3.4 Cirrus Cloud Trends

Various statistical studies [Machta and Carpenter, 1971; Changnon, 1981; Liou et al., 1990] have

indicated a significant correlation between jet fuel consumption and routine National Weather

Service (NWS) reports of high cloud frequencies. A related increase in average surface air

temperatures has also been suggested, even though the sign of the possible climate perturbation

induced by increased cirrus cloud amounts is ambiguous (depending on the assumed cloud

composition model), and the effects of other possible causes like greenhouse-gas warming must

also be taken into consideration. It is noteworthy that the NWS high cloud data that appear to

show some of the strongest correlations have come from Salt Lake City (SLC), Utah [Machta and

Carpenter, 1971; Liou et al., 1990]. Figure 3-12 [from Liou et al., 1990; personal

communication] depicts the analysis of SLC high cloud frequency over the period from 1948 to

1993, compared with the total domestic consumption of jet fuels. The results for SLC appear to

support the connection between increasing jet aircraft operations in the UT and regional climate

change, particularly in the mid-1960s when a sharp increase in domestic air traffic occurred.

A more recent SASS analysis using Air Force surface-based contrail observations [Minnis et al.,

1996a] and the May 1990 fuel usage assessment [Baughcum, 1996] shows a high correlation

between contrail occurrence and fuel usage between 7- and 22-km (Figure 3-14), although most of

the fuel is consumed between 9- and 12-km. Given the clear link between contrails and the growth

of aircraft-induced cirrus (e.g., Figure 3-13), the apparent relationship between fuel usage and

high cloud cover (Figure 3-12), and the dependence of contrail occurrence on fuel usage, it is fair

to conclude that increasing the fuel consumption at high altitudes will lead to additional high cloud

cover. Among the consequences will be changes in the radiation budget, especially over areas with

dense air traffic [Minnis et al., 1996b]. The overall direct and indirect impacts will be fully

assessed as the SASS investigations continue.

3.3 Summary

A substantial foundation of physical and chemical information is available for qualitatively
understanding the atmospheric effects of aircraft emissions. Perturbations to ambient concen-

trations of CO 2, H20 , NOx, and SO x in aircraft wakes are large, have been readily observed, and

form a basis for estimating the large-scale changes induced by aircraft. Aircraft contributions to

upper troposphere NO x are likely significant albeit highly uncertain, while those of CO 2, H20, CO,
hydrocarbons, sulfur, and soot are relatively small. However, because aerosol and cloud

formation are highly non-linear processes with respect to environmental conditions and species
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concentrations,even small perturbationsof H20, sulfur, and soot may carry significant

atmospheric implications.

Process-level studies conducted in the laboratory and in intensive field campaigns have

demonstrated that upper tropospheric levels of NO x are set by a number of sources and that the

effect of aircraft NO x on ozone is a complex function of background gas levels. Because of the

plethora of chemical species present in the atmosphere, there remains substantial uncertainty in the

gas-phase and aerosol-phase chemistry of nitrogen oxides in the upper troposphere. Currently

there are only a limited number of atmospheric datasets with which to understand upper

troposphere NO x distributions and related photochemical processes. In addition, long-term ozone

trend data do not well constrain the aircraft impact due to the measured year to year variability in

tropospheric ozone.

Climate impacts of aviation are divided into direct and indirect effects. Direct effects arising from

the accumulation of gas-phase species are likely to be small and amenable to realistic model

predictions. The direct effect of particle injections, in the form of aircraft contrails, is much more

difficult to predict; the magnitude and sign of the effect is uncertain and depends critically on the

locations and the microphysical properties of the contrails.

Indirect climate effects of potential importance are related to ozone changes in response to aircraft

NO x injections and alteration of the formation and content of future high clouds by aircraft particle

injections. The magnitudes of both effects are highly uncertain. In some locations, such as Salt

Lake City, Utah, high-altitude cloud cover has been observed to increase in conjunction with

aircraft fuel usage and/or contrail occurrence. However, in order to use physically based models to

quantify such climate effects it is important to define the number of CCN and IN formed in or

behind jet engines. Initial attempts to characterize aircraft particle emissions have found

substantial, and unexplained, airplane to airplane variability in volatile aerosol production.
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Table 3-1. Catalog of potential upper troposphere/lower stratosphere perturbations by existing
subsonic fleet.

Emittant

NOx

H20

Sulfur

Soot

Hydrocarbons

CO

CO2

H20

Sulfur

Soot

NOx

Projected
Peak

Perturbation

Potential Atmospheric Interactions

Ozone Effects

2 to 50%

increase

0.001 to 0.01%

increase

0.3 to 2%

increase

Uncertain - up

to 10% increase

0.1% increase

relative to

ambient CH4

0.5 to 2%

increase

Ozone production by NOx-CO-hydrocarbon (ROx)

chemistry, ozone loss by NOx catalysis

HOx formation and ozone production (or destruction)

NAT/ice condensation, denitrification in polar vortex,

increased C1Ox catalysis

Increased aerosol surface area and sequestering of

NOx, decreased ozone production

Additional nucleation sites for aerosols, increased

surface area-changes in chemical reactivity of aerosols

Source of CO, HOx, and H20, interactions with

aerosol chemistry

Modification of catalysis by HOx and NOx

Radiative Forcing Effects

Currently -_3%

of CO2 from

fossil fuel

0.001-0.01%

increase

0.3 to 2%

increase

Uncertain - up
to 10% increase

2 to 50%

increase

Direct change in IR radiative forcing

NAT/ice condensation, cirrus cloud formation, direct

and indirect change in radiative forcing

Increased aerosol mass loading, direct and indirect

change in radiative forcing

Additional nucleation sites for aerosols, increased

surface-area, direct and indirect change in radiative

forcing

Ozone production, change in radiative forcing
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Table 3-2. Global sources of NOx and compilation of source strength estimates.

Source

Fossil Fuel

Estimated strength

(Tg N yr-1)

22

Reference

Hameed and Dignon [ 1988]

21.2 Levy and Moxim [ 1989]

22.2 Benkovitz et al. [1996]

21.4 Levy et al. [1996]

Subsonic Aircraft 1 Beck et al. [ 1992]

0.46 Wuebbles et al. [1993a, b]

Baughcum et al. [1996]

Stratosphere 0.64 Kasibhatla et al. [ 1991 ]

Biomass Burning ,,,6 Hao et al. [ 1989]

8.5 Levy et al. [1991]

5.8 Penner et al. [ 1991 ]

Soil Biogenic Emissions ~5 Dignon et al. [1992]

4.7 MUller [1992]

5.5 Yienger and Levy [1995]

Lightning 2.1 Hameed et al. [1981 ]

19.1 - 152 Liaw et al. [1990]

3- 10 Penneretal. [1991]

220 Franzblau and Popp [ 1989]

1 - 8 Lawrence et al. [1995]

2 - 6 Levy et al. [1996]

4 Price and Rind [19941
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Figure 3-1. Vertical distribution of NO over the Pacific during winter/spring as measured in
PEM-B (February/March 1994).

!1

?

t

. .o ....

Figure 3-2. NO distribution over New Mexico. Data are for July/August 1989 during the summer
monsoon season [from Ridley et a/., 1994].
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solid circles represent 7- to 12-km.
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Figure 3-5. Particle size distribution measured during inflight sampling of a Boeing 737-S aircraft
[Lilenfeld et al., 1995].
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number densities recorded during exhaust plume crossings behind a B757 aircraft simultaneously
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communication].
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Figure 3-7. Net ozone production rate calculated as a function of the atmospheric NOx mixing

ratio at 50"N at 10-kin altitude in July for clear-sky conditions. In all cases 84 ppbv of ozone,

73 ppbv of CO and 1.6 ppmv of CH4 are used. (a) H20 = 50 ppmv; (b) H20 = 100 ppmv,
(c) includes NMHC as well as H20 = 100 ppmv; and (d) includes diurnal cycle in model

calculations. [Source: Brasseur et aL, 1996].
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Figure 3-8. Instantaneous production rate of ozone (P(O3)) in the upper troposphere (10- to 12-

km) over the Pacific (30 to 40" N). These PEM-West A (September/October 1992) data are for

daytime restricted to those cases where the solar zenith angle was in the range from 30 to 60".
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Figure 3-9. Trends in boundary layer tropospheric ozone observed at different latitudes,

including only coastal and high-altitude sites [after Volz-Thomas, 1993] AS: American Samoa,

14°S; B: Barrow, 70"N [Oltmans and Levy, 1994]; CP: Cape Point, 34"S [Scheel eta/., 1990];

HPB: Hohenpeissenberg, 48"N, 1000m [Wege et al., 1989]; MLO: Mauna Loa, 20°N, 3400m;

SP: South Pole, 90"S, 2800m ASL; WFM: Whiteface Mountain, 43"N, 1600m [Kley et al, 1994];

ZS: Zugspitze, 47"N, 3000m
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Figure 3-10. Trends for the periods shown in the ozonesonde measurements at different

altitudes. 95% confidence limits are shown [adapted from Logan, 1994].
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Figure 3-11. High-resolution (1.5 m by 0.1 s) height4ime display of 1.06-micron laser

backscattedng from two .-.45-minute-old overlapping contrails produced by commercial jet air traffic
in a corridor to the north of the DOE Southern Great Plains Clouds and Radiation Testbed

(CART) site, collected during the SUCCESS field campaign on 2 May 1996 by the University of

Utah Polarization Diversity Lidar.
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Figure 3-12. Observed mean annual fractional cirrus cloud cover over Salt Lake City, Utah, from

1948 to 1993 [Liou eta/., 1990; Liou, personal communication]. The dashed line represents a

statistical fit to the cloud cover data for the entire period. Domestic jet fuel consumption, beginning
in 1957, (filled with circles) is provided for comparison.
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Figure 3-13. Cloud development from a DC-8 contrail during SUCCESS off northem Califomia
to Nevada border, 12-13 May 1996.
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4. MODELING THE GLOBAL EFFECTS OF AIRCRAFT EMISSIONS

Attempts to quantitatively predict regional and global scale impacts of subsonic aviation must

focus, at a minimum, on the following key aircraft emissions/atmospheric processes:

1. Chemical perturbations to the upper troposphere and lower stratosphere; in particular, increases

in ambient NOx due to aircraft emissions leading to changes in ozone in an altitude region (9-to

13-km) where ozone is an efficient greenhouse gas.

2. Soot and sulfate aerosols resulting from aircraft emissions can reflect/absorb solar and infrared

(IR) radiation and affect the tropospheric radiative budget.

3. Contrails formed by aircraft could reflect/absorb solar and IR radiation and lead to

modifications in the tropospheric radiative budget.

4. Gas and particle emissions from aircraft that increase the concentration of CCNs and,

consequently, cirrus cloud occurrence, leading to perturbations in the radiative balance.

Past modeling studies have focused primarily on the impacts related to chemical perturbations (#1

above). These studies, done primarily with zonally-averaged, two-dimensional models and a few

three-dimensional models, suggest that current aircraft may have caused an increase of as much as

5 to 7% in upper tropospheric ozone at northern mid-latitudes [e.g., Wuebbles and Kinnison,

1990; Johnson et al., 1992; Hauglustaine et al., 1994; Wauben et al., 1995; Jones et al., 1996;

Brasseur et al., 1996]. The amount and location of NOx injected into the stratosphere suggests that

the impact of aircraft emissions on the stratospheric ozone layer is smaller, although larger effects

could occur if future fleets flew at higher altitudes. Careful analysis of the capabilities and

limitations of current atmospheric models in determining the global environmental effects from

subsonic aircraft has not been accomplished yet and is pursued in this assessment.

Modeling the impacts of aircraft-derived aerosols and particulates (#2-4, above) has received much

less attention so far. Consequently, global model treatments of the particle effects are in a

relatively rudimentary state. The aims of this assessment are to gauge the magnitudes of potential

climatic effects of aircraft emissions through model sensitivity studies and to identify the areas of

model development requiring increased emphasis.

The complexities of the tropospheric processes to be incorporated into assessment models requires

use of three-dimensional assessment models. Although we have not established confidence at the

assessment level in current CTMs for tropospheric 03 prediction, we do have published examples

of individual groups' calculations. We begin in this report to establish a standard process of model

evaluation. We believe that this process should include: a) testing and intercomparison of

algorithms and parameterizations used in large-scale models; b) model simulations to determine the

sensitivity of model results to existing uncertainties in model input and formulation; c) review and

compilation of a database of laboratory and atmospheric measurements which can meaningfully

constrain and test different model components; and d) comparison of model results to atmospheric

observations to reduce existing uncertainties. This chapter outlines efforts in the above areas.

The organization of the chapter is as follows: we first give a brief description of the types of

models used in the past for quantitative predictions and their associated treatments of chemical and

climate processes. In subsequent sections of the chapter we describe the results of a number of

model calculations and tests performed on several specific advanced global models. For
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atmosphericchemistry,the specificmodelsemployedwere IMAGES, Harvard/GISS,and the
modularcodebeingdevelopedby NASA's GlobalModelingInitiative(GMI); for climateimpacts,
weusedtheGISSclimatemodel. As will bedemonstratedin thefollowing sections,noneof these
modelsaresufficientlydevelopedto beableto providecrediblepredictionsof aviationimpacts.
The purposeof this interim assessmenteffort is to denotethe requirementsfor a reliable
assessmentmodelandapplytheserequirementsto the existingglobalmodelsin orderto identify
directionsfor futuremodeldevelopment.We alsoenvisionthat themodularstructureandscience
teamapproachof theGMI will facilitatefuturemodeldevelopmentandassessmentcapabilities.

4.1 Global Model Characteristics

A variety of model types have been developed that are useful in the assessment of the effects of

aircraft on the atmosphere. A fundamental difficulty that has strongly influenced the evolution of

assessment models concerns the spatial and temporal resolution of important atmospheric

processes. Clearly, aircraft emissions may affect processes spanning orders of magnitude in

spatial and temporal scale. On the smaller scale one needs to worry about the chemistry and

dynamics important to a description of the plume over a temporal scale of a few seconds and spatial

scale of a few meters following emissions from an aircraft engine. At the larger scale one needs to

be concerned with the potential of emissions to influence the Earth's climate on time scales of years

or longer, and on global spatial scales by changing, for example, the distribution of ozone in the

troposphere and stratosphere.

It is impossible to treat in detail with a single model all the important processes that operate over

these temporal and spatial scales. The computational complexity of such a model far exceeds our

current (or near future) capabilities. It is thus desirable to treat some processes crudely and others

more elaborately, based on their relative importance to the scientific questions being addressed. In

addition, in attempts to understand a complex process, it is generally advantageous to isolate one

component of the system and simplify those other components that are peripheral to the area of

focus. These constraints have strongly controlled the evolution of assessment models, and it is

possible to categorize the models in a variety of ways.

One way of categorizing these models is by spatial scale. At the smallest temporal and spatial

scales are several types of models, including those attempting to examine the processes in the

emission plume. These models treat small scale phenomena, and ignore processes that operate on

larger time and space scales (i.e., those processes with scale greater than a km, or longer than a

few hours). Another example of small scale models are "box models" which essentially ignore the

role of transport and focus primarily on the chemical constituent evolution in a small volume of air.

We will loosely call these models "small scale," or "process" models throughout the rest of this

section.

At the other end of the spectrum are models that attempt to represent the large spatial (e.g., greater

than 1000 km in the horizontal, or 1 km in the vertical) scales and ignore, or attempt to represent

very crudely those processes such as clouds that operate on smaller scales. We will loosely call

these type of models "global" models, although "mesoscale" or "regional" models might also fall

into this category.
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4.1.1 MODEL TYPES

Amongst global models, a means of categorization is by which "processes" are treated explicitly,

and which are treated implicitly or approximately. For example, most of the global models used

here attempt to assess the role of emissions on only the chemical composition of the atmosphere.

They typically use a prescribed dynamical component (i.e., the winds, temperature, clouds, etc.),

and calculate the chemical evolution of the atmosphere and its response to changing emissions. By

prescribing the dynamical component they eliminate any feedbacks (interactions) that can take place

between changing atmospheric trace constituents and dynamics. These models are typically

identified as chemistry-transport models (CTMs). They have formed the backbone of the

assessment effort to date, and are still a very important component today. The level of complexity

of the transport representation can vary from 2-D (latitude, height) prescriptions of the transport

circulation [e.g., Jackman, 1991] to more realistic three-dimensional prescriptions (such as the

CTMs used in this assessment).

Because of their computational efficiency 2-D models have commonly been used for assessment

studies of potential ozone changes in the atmosphere, particularly for the stratosphere. However,

we are reaching the point where the known complexity in the chemistry and transport processes

limit the utility of these models. In 2-D models, transport is typically represented by a combination

of a residual mean circulation to account for large-scale processes and eddy diffusivity to account

for transient and unresolved mixing processes. The 2-D models seem to generally do quite a

reasonable job of representing the transport circulation in the stratosphere away from the

tropopause. However in these models the processes that act to control trace species distributions in

the vicinity of the tropopause and below are particularly difficult to handle in a realistic fashion,

and this is a region of special importance to assessments of both subsonic and supersonic aircraft.

An example of processes that are exceedingly difficult to represent in these models are clouds (such

as polar stratospheric clouds or tropospheric convective clouds) formation and evaporation which

cannot be readily predicted using zonal mean quantities. The errors associated with the

simplification of the transport circulation inherent in 2-D formulations have been of some concern

to the assessment community. Several studies [e.g., Rasch et al., 1994, Douglass et al., 1993]

have used 3-D models, which include reasonably realistic specifications of the winds and highly

simplified chemistry, in an effort to understand differences between 2-D and 3-D representations of

transport processes in the upper troposphere and stratosphere. The next level of complexity
involves the three-dimensional CTMs like the Intermediate Model for the Annual and Global

Evolution of Interactive Systems (IMAGES) model [Mtiller et al., 1995], used in this interim

assessment and described elsewhere in this chapter, which attempt to treat many more processes of

importance in the troposphere, and much more elaborate chemistry and emissions, but use

statistical parameterizations (discussed below) of many of those processes.

Another major difficulty with 2-D models in the troposphere is their zonal-averaged treatment of

the chemistry and transport processes involving short-lived gases and aerosols. Sources for many

of the short-lived constituents of interest are primarily over land, resulting in chemical interactions

that are clearly non-zonal. Nonlinear dependencies on the concentrations of these constituents

further add to the difficulty of treating global tropospheric chemistry with a 2-D model.

Another class of model prescribes the chemical composition of the atmosphere, and predicts the

dynamical behavior using an explicit description of the physics of the atmosphere. The
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atmosphericmotions are driven by heatingassociatedwith absorptionof solar radiation, the
absorptionand emissionof long-waveradiation,and through heatingassociatedwith phase
changesof water,and exchangesof heatwith other componentsof the climate system(i.e.,
oceans,cryosphere,biosphere).This typeof modelis typically identifiedasa "dynamicalmodel."
More elaborateversionsare generallyknown as "generalcirculation models" (GCMs). By
changingtheprescriptionof thechemicalcompositionof theatmosphere,onecanexaminechanges
in themodelatmosphereandusethemodelto assesstheinfluenceof thesechangeson theEarth's
climate(suchastheGoddardInstitutefor SpaceStudies(GISS)modelusedin thisassessment).

A third typeof globalmodel is actuallya combinationof thefirst two. Predictiveequationsfor
boththechemistryanddynamicsareusedwithin themodel. Thechangingchemicalcomposition
canaffecttheradiativeandhydrologicprocessesin themodel,whichwill, in turn,feedbackon the
chemistrythroughadynamicalresponse.Comprehensive3-D versionsof this typeof modelhave
not yet reacheda point wheretheyareusefulin theassessmenteffort, but it is an areaof active
research[e.g.,Austin et al., 1992, Rasch et aI., 1996]. Crude versions of this type of model do

exist, in which the model dynamics and chemistry are allowed to interact, but the interactions are

severely simplified when compared to how those processes operate in the real world. Examples of

this type of model are the 2-D models, which attempt to use simplified diabatic circulations to

represent the actual 3-D atmospheric flows [Brasseur et al., 1990]. They do allow feedbacks

between chemical composition and radiative forcing, but are thought to be more effective for

stratospheric assessments because of the simplifications made in treating tropospheric processes.

4.1.2 ASSESSMENT MODEL REQUIREMENTS

The need for treating some kinds of processes from first-principle physics, and other processes

approximately has introduced the concept of "pammeterization" into the lexicon of modeling.

Physical processes are "parameterized" when they are treated in a way in which one attempts to

capture the qualitative behavior of a process correctly, but not necessarily to express the process in

terms of a fundamental physical law, derived from first principles. For example, an expression for

the fraction of air occupied by clouds within a volume of air could be used at each point of a global

model. Since there is a strong empirical correlation between relative humidity and cloudiness, the

cloud fraction is often represented as a quasi-linear function of relative humidity, and the

coefficients of the function are adjusted to provide a reasonable cloud fraction when compared to

observations. The concept of parameterization provides an explicit link between "process models,"

"box models," etc., and large-scale models. It is sometimes possible to use these process models

to construct parameterizations or evaluate the properties of the parameterization.

All of the types of models discussed above, and their incorporated parameterizations, continue to

evolve as the understanding of important atmospheric processes improves. Currently,

uncertainties in both the basic understanding of important processes and in the treatment of some of

the chemical and physical processes in models significantly affect the ability to represent the

atmosphere in general, and limit the accuracy of the model predicted changes in atmospheric

chemistry or climate from aircraft emissions. For example, major uncertainties in the effect of

lightning on background levels of tropospheric nitrogen oxides lead to uncertainties in the

calculated effects of additional nitrogen oxides on concentrations of tropospheric ozone. Likewise,

uncertainties in potential feedbacks between various climate system components limit the accuracy

of GCM simulations. Many climate processes and their feedbacks are non-linear leading to
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potentiallylargepredictiveerrors. As a specificexample,currentGCMs calculatepolar temp-
eratureswhicharetoo low [Boeret al., 1992]. As a consequence, fully coupled chemistry/climate

models can not yet be expected to predict accurately the effects of emissions on PSC-catalyzed

ozone chemistry.

A reliable assessment must be carded out with models that fulfill the following conditions:

• The chemical mechanisms in the model are accurately solved, and give a realistic representation

of atmospheric chemistry. Although current stratospheric chemical mechanisms seem to have

reached the point at which they accurately describe stratospheric concentrations, the same

cannot be said of the troposphere. Different assumptions regarding photolysis rates,

heterogeneous/aqueous chemistry, and hydrocarbon chemistry can lead to different results.

Tropospheric chemical mechanisms must be intercompared and tested against simultaneous
observations of different constituents.

• The model incorporates an accurate representation of the transport mechanisms, both large-

scale (such as advection) and subgrid (convection). The appropriateness of these schemes

depends on: (i) whether the models incorporate accurate numerical algorithms for solution of

the advective and convective mass fluxes, and (ii) whether the incorporated meteorology

accurately represents the long-term average climatology of the troposphere. Thus these models

are tested by: (a) intercomparison of model results utilizing different winds/transport schemes;

and (b) comparison of model results to atmospheric observations of constituents that are

particularly sensitive to a given transport mechanism (for example, radon-222 (222Rn) as a

diagnostic of convection).

• The model must give distributions of trace species sensitive to both chemistry and transport that

compare well to observations. In particular, since the primary goal is predicting changes in 03

from changes in NOx, agreement with available observations of ozone and NOx must be

established to the greatest extent possible.

4.2 Effects on Atmospherlc Chemistry

The present effort constitutes a first attempt to address the above requirements by testing different

aspects of assessment models. Thus, we emphasize the model intercomparison and sensitivity,

rather than the final "predictions," because we are still in the process of improving current models.

This effort includes the following components:

1. Intercomparison of chemical mechanisms used in CTMs for treatment of tropospheric

chemistry.

2. Three-dimensional simulations of a reactive nitrogen (NOy)-like tracer and 222Rn in CTMs to

examine the treatment of transport processes in these models.

3. Identification of atmospheric observations needed to test different aspects of current CTMs and

a limited comparison of available data with the models used in this assessment.

4. Sensitivity tests with current CTMs to investigate the effects of several major uncertainties on

the tropospheric impact of aircraft emissions.
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In this section,thesecomponentsare used to examinethe abilities and limitationsof several
representativemodelsof troposphericprocessesandto examinethesensitivityof ozoneandclimate
in thesemodelsto currentand potentialfuture aircraftemissions. The next subsectiongives a
shortdescriptionof the3-D chemicaltransportmodelsusedin this assessmentbeforeproceeding
with theanalysesof thesemodelsandsensitivityanalysesof effectsonozone.

4.2.1 DESCRIPTION OF MODELING TOOLS

This section describes the 3-D CTMs used in this interim assessment. Because they were

employed in the sensitivity analyses, the IMAGES and Harvard/GISS models are examined in

detail. However, initial results from the new GMI modeling capability are also provided in the

sections examining atmospheric tracers. Table 4-1 describes the spatial and temporal resolution

used in these models, while Figure 4-1 depicts the vertical resolution from the ground to 100 mbar

in each of these models. The IMAGES model has a much finer vertical resolution, and also

extends to higher altitudes, than the Harvard/GISS model.

4.2.1.1 IMAGES Model

The IMAGES model is a 3-D CTM with a weather-less, monthly mean description of tropospheric

transport. It calculates the monthly averaged distributions of 56 chemical species, including ozone,

hydrogen oxides, nitrogen oxides, sulfur oxides, methane, and several non-methane

hydrocarbons. Its horizontal resolution is 5 ° in latitude and in longitude. In the vertical, the model

has 25 layers extending between the Earth's surface and the lower stratosphere (50 mbar) [Mtiller

and Brasseur, 1995; Pham et al., 1995].

The transport of the species is solved by a semi-Lagrangian scheme [Smolarkiewicz and Rasch,

1991] which calculates the advection using monthly averaged winds. The winds, temperatures,

and water vapor concentrations are an average of 1985 to 1989 taken from an analysis of the

European Center for Medium-Range Weather Forecasts (ECMWF). Note, however, the existence

of problems with ECMWF and other analyses near the tropopause concerning the actual strength of

the jets [c.f., Tenenbaum, 1991; 1996]. The impact of wind variability at time scales smaller than

one month is taken into account by the introduction of a diffusion term in the continuity equation.

The diffusion coefficients are estimated from the ECMWF wind variances. Vertical mixing in the

planetary boundary layer is also represented as diffusion. The effect of deep convection on vertical

transport is parameterized following the scheme of Costen et al. [1988]. Cloud updrafts are

parameterized using the deep convective cloud coverage and cloud top altitudes estimated by the

International Satellite Cloud Climatology Project (ISCCP) [Rossow and Schiffer, 1991].

Convection intensity is adjusted so that the model reproduces the observations for radon (Rn) at

mid-latitudes in summer [Liu et al., 19841.

The chemical scheme includes more than 150 reactions, including simplified oxidation schemes for

ethane, propylene, propane, isoprene, etc. The photodissociation rates are interpolated from a

look-up table. This table contains J values for discrete values of the zenith angle, altitude, ozone

column, albedo, and 500 mbar and 200 mbar temperatures. The table was calculated using the

8-stream discrete ordinates radiative model. The effect of clouds in the model is parameterized

following Chang et al. [1987] and using the cloud cover and optical depth estimated by ISCCP.
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Thesurfaceemissionsanddepositionvelocitiesusedin IMAGESarebasedon an inventoryof the
sourcesby Miiller [1992] (see also MiJller and Brasseur [ 1995]), with several modifications. The

biomass burning emissions are based on a newer inventory by Granier et al. [1996]. The ocean

source of CO has been reduced to 20 Tg yr -1 , whereas the motor vehicle exhaust emissions of CO

and hydrocarbons have been increased.

The production of NO by lightning discharges in the basic model is 5 Tg N yr -1 globally,

distributed in accordance with the satellite-derived flash frequencies of Turman and Edgar [ 1982].

The emission is assumed to be constant with altitude between the surface and the top altitude of the

deep convective clouds. The washout scheme is based on the ISCCP cloud dataset and

climatological precipitation rates. The conversion of N205 to HNO3 on aerosols is parameterized

using the model-calculated sulfate distribution.

The integration time step is 6 hours except during 3 days at the beginning of each month of

simulation. These 3 days are calculated using a time step of half an hour and diurnally varying

photolysis rates. The diurnal behavior of the concentrations is saved and used afterwards to

correct the chemical reaction rates, in order to estimate the effect of the diurnal cycle.

In prior studies, the IMAGES model has been used to investigate the budget of important

tropospheric species and their evolution since pre-industrial times [Miiller and Brasseur, 1995], the

sulfur cycle [Pham et al., 1995, 1996], the impact of biomass burning [Granier et al., 1996], and

an earlier look at the impact of subsonic aircraft [Brasseur et al., 1996].

4.2.1.2 Harvard/GISS Model

The Harvard/GISS CTM has a spatial resolution of 4 ° x 5 °, with 9 vertical layers in sigma

coordinates, extending from the surface to 10 mbar. Meteorological fields are from the NASA

GISS GCM II [Hansen et al., 1983], and are updated every 4 hours. A mass-conserving second-

order moment scheme [Prather, 1986] is used in tracer advection. Dry and wet convection fluxes

in the model are consistent with the GCM [Prather et al., 1987]. Dry deposition is computed with

a resistance-in- series scheme similar to that of Gao and Wesely [1995]. Wet deposition of soluble

tracers is computed with the scheme of Balkanski et al. [1993]. The CTM has been applied

previously to a number of atmospheric chemistry problems [Prather et al., 1987; Jacob et al.,

1987; Spivakovsky et al., 1990a; Balkanski et al., 1993; and Jacob et al., 1993].

The present version of the model transports 15 reactive chemical tracers: odd oxygen (Ox = 03 +

O + NO2 + HNO4 + 2 x NO3 + 3 x N205), NOx (NO + NO2 + NO3 + nitrous acid (HNO2)),

N205, HNO4, PANs (peroxyacetyl nitrate and its homologues), alkylnitrates (>C4 lumped as

butylnitrate), HNO3, CO, ethane, higher alkanes (>C4 lumped as butane), alkenes (>C3 lumped as

propene), isoprene, acetone, higher ketones(aC2 lumped as methylethyl ketone), and H202. The

chemical mechanism is based on recent compilations including Paulson and Seinfeld [1992],

Atkinson et al. [1992], and DeMore et al. [1994]. The quantum yields of O(1D) from ozone

photolysis have been updated following Michelsen et al. [1994]. The termolecular reaction rate

constant of OH + NO2 is based on a new recommendation by Donahue et al. [ 1996], and is 15 to

20% slower than that by DeMore et al. [1994] under tropospheric conditions. Hydrolysis of N205

to HNO3 on aerosol surfaces is included with a reaction probability of 0.1 [DeMore et al., 1994].

Aerosol surface areas are derived from a CTM simulation of sulfate [Chin et al., 1996]. Following
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theproceduredescribedby Spivakovskyet al. [1990b], the chemical mechanism is parameterized

for rapid computation.

Global sources of NOx in the model include: 21 Tg N from fossil fuel combustion [Benkovitz et

al., 1996], 0.46 Tg N from the 1992 subsonic aircraft NOx emissions inventory [Baughcum et al.,

1996a, and Metwally 1995], 11.6 Tg N from biomass burning based on a preliminary CO

emissions inventory by J. Logan, and 6.6 Tg N from soils following the scheme by Yienger and

Levy [1995]. A lightning source of 4 Tg yr -I is apportioned over convective regions, following

Price and Rind [1994]. The amount of NOy transported from the stratosphere is 0.5 Tg N yr I . In

sum, the total NOy source in the troposphere is 44 Tg N yr -1.

HC emissions from fossil fuel combustion are based on Piccot et al. [1992], with the emission

ratios from Middleton et al. [1990] and light alkane ratios derived from measurements at Harvard

Forest [Goldstein et al., 1995]. Biomass burning sources are scaled to the CO source based on

observed emission ratios [Lobert et al., 1991; Laursen et al., 1992; Nance et al., 1993; Hurst et

al., 1994; and Andreae, 1996]. Isoprene emissions are computed based on the scheme by

Guenther et al. [ 1995].

4.2.1.3 GMI Core Model

The NASA AEAP GMI is a new approach towards integration of a 3-D chemical transport model

for assessment purposes. The initiative brings together algorithms, databases, and process models

from different investigators, and integrates them into a common shell, the so-called "core model."

This core model is able to carry out simulations on both sequential/conventional type

supercomputers as well as massively parallel machines. This structure allows for testing a matrix

of possible numerical algorithms and physical parameterizations for simulating atmospheric

physical and chemical processes, and intercomparing results using different approaches. The GMI

Science Team has been constituted to put this model together and analyze the results. The

development is still underway.

The simulations carded out by the core model for this report use 2 different sources for the input

meteorological fields and 2 different transport schemes. These two fields are derived from climate

model outputs (i.e., GCMs); one being the National Center for Atmospheric Research (NCAR)

developed Community Climate Model version 2 (CCM2) and the other being the NASA GISS

climate model in coordination with University of California at Irvine (UCI). NCAR meteorological

data are saved every 6 hours and NASA GISS GCM data every 8 hours. Details of each transport

scheme follow.

The GCM derived data of the NCAR CCM2 extend into the stratosphere (to 0.025 mbar) having

44 layers with horizontal resolution of approximately 3 ° by 5 °. Advection and convection in the

NCAR CCM2 are based on the semi-Lagrangian algorithm [Rasch and Williamson, 1990] and

Hack convection algorithm [Hack, 1994]. Vertical diffusion in the boundary layer is represented

by typical down gradient diffusion throughout the depth of the atmosphere plus a non-local term

within the convective boundary layer [Holtslag and Boville, 1993].

The GCM derived data of the NASA GISS/UCI model has a resolution of 7.8 ° in latitude by l0 ° in

longitude, with 21 vertical layers extending to 0.02 mbar. The NASA GISS model uses a second
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order momentalgorithm[Prather,1986]for advectionwhile convectionis basedon Rind et al.

[1988].

Although no calculations of chemistry effects from aircraft are yet available from GMI, this report

does include results from Rn and NOy tracer studies done with the GMI/CCM2 and GMI/UCI

versions of these meteorological datasets. The GMI is also incorporating the winds and advection

algorithm from the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center

[Schubert et al., 1995]. Results utilizing these winds/advection algorithms will appear in future

reports.

4.2.2 EVALUATION OF MODELS

4.2.2.1 Evaluation of Chemical Mechanisms

In this section, several chemical reaction mechanisms and radiation codes for generating photolysis

rate coefficients are compared in order to ascertain the level of agreement or identify discrepancies

in our current understanding of atmospheric chemical processes. As discussed below, simulations

of ozone formation in the upper troposphere agree to within 2 to 15% among tropospheric chemical

models using NOx-catalyzed chemistry. The model comparison exercise included the IMAGES

and Harvard models, described in Section 4.2.1, as well as some other current CTMs. Table 4-2

lists the participants of this comparison exercise and provides a brief description of their models

(including literature reference).

Several research groups have compiled chemical reaction schemes derived from field and

laboratory measurements, and have devised numerical techniques for calculating the production

and destruction rates of reactive atmospheric constituents. In addition, photolysis rates are

calculated using radiative transfer models employing various assumptions and parameterizations of

radiative processes. These chemistry and radiation mechanisms must balance requirements for

numerical accuracy against limitations of computational speed and memory, and different degrees

of extrapolation are employed to account for the chemistry of important but poorly measured

constituents and processes. Therefore, various research groups employ different species

categories, reaction groupings, and reaction sequences in order to optimize their chemical reaction

mechanisms to individual research objectives. Differences between calculated rates of chemical

reactions provide a crude estimate of the current understanding of these processes, and also

provide an estimate of the confidence with which these processes can be simulated in the

troposphere.

Comparison of Chemical Mechanisms

For this comparison, we emphasize model calculations of ozone production and loss in the upper

troposphere. All models were initialized with identical upper tropospheric chemical and

meteorological conditions, according to specifications in a protocol document (available through

Chris Walcek, SUNY Albany). Each group calculated photolysis rates from a specified ozone

column under clear sky, no aerosol, no surface albedo conditions. Nine simulations were

performed under a range of reactive nitrogen concentrations (10 pptv - 10 ppbv), and each group

provided concentrations of several constituents at 12-hour intervals during each 10-day simulation.

No emissions or non-chemical removal processes were considered in this comparison.
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Figure4-2 showsthecalculatedconcentrationsof NOx andozoneduring one 10-day integration

according to six participating models for 3 ppbv total NOy, initially present only as NO. During

the 10-day period, highly reactive radicals reach a diurnally-varying, short-term steady-state, while

total reactive nitrogen approaches a chemical steady-state within a time constant of several days.

Ozone and hydrogen peroxide (H202) slowly accumulate, never reaching a chemical balance,

reflecting their relatively long chemical lifetimes in this region of the atmosphere. The total

concentration of reactive nitrogen (NOy - NO + NO 2 + HNO3 + HNO4 + PAN + NO3 + 2N205)

remains essentially constant during the integrations, although some models include a relatively

minor source of NOx from nitrous oxide (N20) reactions. All models initially show diurnal

fluctuations in ozone concentration, which disappears after a few days as NOx concentrations

decrease, and the sunlight-induced NO-NO2-O3 photostationary fluctuations diminish.

Figure 4-3 shows ozone formation rates averaged over the last five days of each 10-day integration

calculated by the six models. The models agree to within 5 to 15% under most NOy
concentrations. The absolute agreement is within less than a few tenths of a ppbv per day for most

mechanisms, although both the relative and absolute differences between models increase at NOy

concentrations greater than a few ppbv. At l0 ppbv NOy, a concentration that is rarely observed in

the upper troposphere, the calculated ozone formation rates disagree by about 50%.

The trends shown in Figures 4-2 and 4-3 are extremely sensitive to the precise time integration

period, the hydrocarbon mix, pressure, temperature, photolysis rates, ozone and water vapor

concentrations, among other factors. For this comparison, "typical" or "representative" values

were specified for each of these parameters. The calculations shown here cannot be used to make

generalized conclusions about the chemistry of reactive pollutants in the upper troposphere, since

many additional nonchemical factors influence ozone and NOy concentrations in the upper

troposphere. The main purpose of the calculations shown here is to highlight the discrepancies in

our ability to quantify the chemical reactivity of various pollutants in the upper troposphere.

Differences among the model results arise from differences in mechanism formulations, numerical

techniques, photolysis rates and other factors. Deviations in calculated ozone chemical tendencies

were not significantly correlated with deviations in numerous other model diagnostic parameters

such as photolysis rates, concentrations of individual reactive nitrogen species, and calculated

concentrations of OH and HO2 radicals. In addition, relative model discrepancies are different at

different NOy concentrations. Therefore, it is difficult to unambiguously identify the reasons for

the differences among the various mechanisms. Figure 4-4 shows the relative root mean square

deviations among models for numerous calculated parameters. The magnitude of the disagreement

in ozone chemical tendencies is comparable to the differences among several other diagnostic

parameters. Some of the largest differences in chemistry or photolysis rate calculations occur in

those areas where rate coefficient recommendations are undergoing revisions based on recent

measurements and evaluations. In particular, rate coefficients for PAN formation and ozone

photolysis to give O(ID) are undergoing substantial revisions, resulting in corresponding

deviations among modeling groups for these factors. In addition, the relatively large discrepancies

in calculated PAN concentrations are misleading, since PAN accounts for only I to 3% of the total

reactive nitrogen, and small differences in absolute concentration become large in a relative sense.
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Comparison of Photolysis Rates

Figure 4-5 shows scatter diagrams correlating two key photolysis rates and corresponding ozone

formation rate calculations. All modeling groups calculated photolysis rates for 40°N, 21 June,

clear-sky, no aerosol and zero surface albedo conditions. In addition, all groups used the identical

vertical distribution of ozone and total ozone column (320 Dobson units). NO2 photolysis rates are

fairly consistently calculated, with a relative rms deviation of 6%. However, there were _+10%

deviations in the calculated ozone photolysis rate. These deviations in part reflect recent suggested

updates and controversies about the wavelength dependence of O(1D) quantum yields from ozone

photolysis. Many of these updates have not been incorporated into standardized summaries of

photolysis information.

In summary, several chemical reaction mechanisms and radiation codes used around the world for

estimating ozone formation in the upper troposphere are compared. Among the mechanisms

considered, calculated ozone formation rates from NOx-catalyzed reactions in the upper

troposphere agree to within 2-15%. Differences between calculated ozone formation rates are

comparable to the discrepancies in photolysis rates, nitrogen speciation, and free-radical

concentrations calculated by the various models. The largest differences in chemistry or photolysis

rate calculations occur in areas where rate coefficient recommendations are undergoing revisions

based on new measure-ments and ongoing evaluations. In particular, rate coefficients for ozone

photolysis (O(1D)) and PAN formation are undergoing substantial revisions, resulting in

corresponding deviations among modeling groups for these factors.

4.2.2.2 Rn Tracer Study: Evaluation of Rapid Vertical Transport Near the
Ground

Description of the Experiment

Radon (Rn) is chemically inert, has a 5.5-day e-folding in the atmosphere due to radioactive decay,

and has generally well understood sources from radium decay in soils. For these reasons, it

provides a useful tracer of rapid transport processes in models of the atmosphere. Rn was recently

used in two model intercomparison workshops sponsored by the World Climate Research Program

(WCRP) [Jacob et al., 1996a (hereafter referred to as WCRP93); Rasch et al., 1996 (hereafter

WCRP95)] as part of its evaluation of transport processes in the atmosphere. Areas remote from

radon sources (i.e., oceanic regions or the upper troposphere) are typically characterized by low

values of radon unless there is a mechanism like convection which can move it rapidly into that

region. High values of radon thus provide an indication of where those rapid transport

mechanisms are important. The observational data used to compare to the models discussed below

is described in more detail in Jacob et al. [1996b]. In the following paragraphs we describe briefly

some conclusions arising from a comparison of observations with the IMAGES simulations of Rn,

and the GMI model driven by meteorology archived from the NCAR CCM2 and GISS/UCI
models. A version of the Harvard/GISS model was included in the earlier WCRP inter-

comparisons.

The modeling of atmospheric trace species has evolved very rapidly over the last five years. Our

understanding of the processes controlling trace species distribution and the representation of those

processes in models has changed substantially. Models are also occasionally adjusted to be
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optimal for treating a particular type of problem. For example, it is important to resolve vertical

structures in the vicinity of the tropopause for problems in which stratosphere-troposphere

exchange is critical. This would not be important for studying the controlling influences of a

species with an origin at the Earth's surface if the area of focus was the middle troposphere. To

minimize the computational burden, tradeoffs in resolution and process detail are balanced, and a

reasonable compromise is chosen. For this reason, a variety of model configurations have been

adopted by the groups participating in this assessment, and the model configurations have been

changing as more is learned about the controlling processes for the problem of interest. The

models used in the assessment reflect a variety of optimization strategies.

The CCM2 and GISS/UCI meteorological datasets used here have lower horizontal resolution and

higher vertical resolution than the configurations typically used for tropospheric simulations, in

order to provide resolutions more suited for simulations of stratosphere-troposphere exchange

(STE) processes and trace species distributions in the stratosphere used by the Stratospheric

Tracers of Atmospheric Transport (STRAT) Mission Science Team. More recent configurations of

the NCAR and GISS climate models, with improved physical parameterizations and resolutions

more suited for the troposphere, were used in the WCRP93 and WCRP95 workshops. The

differences in parameterizations and resolution have a significant impact on the Rn simulation, and

we will occasionally comment on this and contrast it with the WCRP simulations. We also note

that the GMI model can be used with the NASA DAO analyses for the driving meteorological data.

Rn simulations with these data are described in Allen et al. [1996].

Only monthly averages were reported by the GMI model and the IMAGES model has only

monthly average meteorology and thus does not produce any variability to be compared with

observations. This means that we cannot comment on higher frequency phenomena in the

simulations, and thus we concentrate on seasonal phenomena.

The simulations used the scenario proposed for the WCRP95 intercomparisons. Rn was assumed

to be emitted from all land surfaces except Greenland and Antarctica (no emissions poleward of

60°S and 70°N). Emissions were assumed to be uniform in space and time over this region, with a

source strength of about 1 atom cm 2 st between 600N and 600S and 0.5 atom cm 2 s _ between

60°N and 70°N (1 atom cm -2 s-_ corresponds to 3.69 x 10-21 kg m 2 s l). Each model renormalized

the basic emission rate slightly to provide a global value

differing land masks. The decay rate for Rn was set

corresponding to an e-folding lifetime (i.e., time to reach

days.

of 15 kg yr -1 after compensating for

to provide a half-life of 3.83 days

1/e = 1/2.72 of initial value) of 5.52

The models were started with zero atmospheric distributions and were integrated until an

equilibrium between sources and sinks was reached. The models were then evaluated over a

subsequent one year simulation.

Model Results

Figure 4-6 shows the zonally averaged December, January, February (hereafter DJF) composite

distribution for Rn for the three models. The contours are approximately logarithmic in scale.

High values dominate near the surface, decreasing towards the tropopause, reflecting the rapid

decay occurring as Rn moves from its source region. Relatively high Rn concentrations are

evident in the tropical upper troposphere in all models, with maxima concentrated in the region of
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outflow from convectiveregions. The higher emissionsin the Northern Hemisphere (NH)

associated with the dominance of land there is also evident. The DJF figures are consistent with

models participating in the WCRP intercomparisons, although the GMI/UCI model tends to have

higher values at 100 mbar than most of the WCRP participants.

The high values in the upper troposphere stand out even more strongly during June, July, and

August (JJA), particularly in the GMI/UCI model which has a maximum value of order 10 x 10 -21

(volume mixing ratio units) at 300 mbar in the NH. This equatorial maximum was also evident in

the related GISS model in the WCRP intercomparison.

A region of discontinuity indicated by "kinks" in the contours at 100 mbar is evident during both

seasons in IMAGES at the tropical tropopause where the contours are nearly horizontal and cluster

very closely. The discontinuity is thought to be directly connected to a lack of temporal variability

in its convection scheme and the use of climatological, monthly mean cloud statistics. The

GMI/CCM2 model shows substantially more mixing in the upper polar troposphere than either of

the two other models. IMAGES transports significantly less Rn into the middle and upper

troposphere in the south polar regions than most other CTMs.

A composite observational profile over the western US (115 to 100°E, 35 to 45°N) is shown in

Figure 4-7 for summer (JJA, panel a) and winter (DJF, panel b). The observational profiles are

comprised of a subset of observed profiles from Liu et al. [1984]. The models provide reasonable

simulations for both seasons. During the winter season, the GMI/UCI model shows the strongest

venting to the upper troposphere and stratosphere, a bias also seen in the companion GISS and

Harvard datasets used in the earlier intercomparisons. The IMAGES model has the highest surface

values and the strongest gradient near the surface where it also has the highest vertical resolution

(about twice that of the CCM2 and three times that of the UCI model in the lower troposphere).

All models tend to overestimate the Rn concentrations during summer at 10 km. The GMI/CCM2

model has the lowest concentrations in the upper troposphere and lower stratosphere where it has

the highest vertical resolution of the 3 models. A hint of a problem with the seasonal cycle over the

western US can be seen in Figure 4-7, panels a and b. While the observations suggest a maximum

at the surface in the winter months and minimum in summer (consistent in a physical sense with

the idea of a trapping of boundary layer air during the winter, and the convective venting of

boundary layer air in summer), the variation in the IMAGES model is much weaker. The

physically intuitive seasonal cycle is seen at some sites, e.g., Socorro, New Mexico (not shown),

although it is substantially weaker in that model than the observations.

Perhaps the most comprehensive set of vertical profiles assembled for one region are the those

gathered by M. Kritz [personal communication] in the summer of 1994 in a series of flights

originating in the San Francisco area and extending over the region 125 to 114°W longitude, 34 to

41°N latitude. A comparison of the composite summer profile for the models and observations can

be seen in Figure 4-7, panel c. All models have difficulty in capturing the "C" shape profile (i.e.,

mixing ratios increasing in the upper troposphere) seen in the San Francisco observations.

A rigorous test of the simulation of transport to remote regions of the world is provided at Mauna

Loa (Figure 4-8, panel a), where measurements are made at about 600 mbar and sampled during

downslope conditions. The measurements thus provide a useful measurement of the free

troposphere from a surface site. The models significantly underestimate the Rn amount there, as

do all other models we are aware of. Kasibhatla and Mahowald [personal communication] have
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suggestedthat this error is due to a significantunderestimateof the emissionover the Asian
plateau.Themodelscapturethe seasonalcycleof transportof continentalair off thecoastof the
US well at Bermuda(Figure4-8, panelb), demonstratingtheir ability to treat resolvedscale
transportaccurately,at leastover relatively short distancesin areaswith well characterized
meteorology(like the easternUS and adjacentAtlantic). The GMI/CCM2 model tends to
overestimatetransporthere during winter months, althoughthis is not seenin the WCRP95
simulationsusingimprovedmodelphysicalparameterizationsandhorizontalresolution.

TheIMAGES simulationat CapeGrim (Tasmania,Figure4-8, panelc) showsthefight seasonal
cycle,althoughit is a factor of two to threehigher thanthe correspondingobservations.The
GMI/CCM2andGMI/UCI modelsareclosein amplitudebut lack theappropriateseasonalcycle.
Again, their simulationsin the WCRP95intercomparisonwere considerablybetter,presumably
becauseof improvedparameterizationsandresolution.Becauseonlyoneyearof observationswas
available, one cannot discount natural variability as an explanationfor model/observation
discrepanciesthere.

Thereareontheotherhandmorethan10yearsof observationsfor theFrenchislandsof Crozet,
KerguelenandNewAmsterdamlocatedin theSouthIndianOcean[Lambert,Polian,Ardouinand
Balkanski, personalcommunication]and at Dumont d'Urville (Antarctica),and each model
(particularlyIMAGES) significantlyoverestimatesthe measuredvaluesin theseregions. This
problemis demonstratedfor two of the stationsin Figure4-8, paneld. Thesesimulationsare
significantlylessaccuratein the SouthernHemisphere(SH) than the simulationsobtainedin
WCRP95usingthemeteorologyfrom theCCM2or GISS/UCImodels.

Conclusions

These models generate simulations of Rn transport that are of comparable quality to other CTMs.

They are not the best, nor the worst when evaluated in the context of the WCRP intercomparison.

It is important to be aware of the following IMAGES and GMI model behavior:

• Very strong and rapid transport from the surface to the upper troposphere during NH summer

by GMI/UCI.

• The IMAGES and GMI/UCI models show a much more isolated summer polar region than

does the GMI/CCM2 model. There is also substantially stronger mixing into the lower

stratosphere in the tropics in IMAGES and the GMI/UCI models than that seen in the

GMI/CCM2 model although it is difficult to see in the Figure 4-6 plots.

• There is a suggestion of excess diffusive transport to the remote extratropics for the IMAGES

model, as seen by the Cape Grim and Dumont d'Urville comparisons with observations.

• There is a suggestion of the wrong seasonality of boundary layer fluxes over the western US in

IMAGES.

• There is a suggestion of excessive vertical transport to the upper troposphere in the GMI/UCI

model, at least over the western US.

These characteristics of the models are important to the assessment, because they indicate areas

where model uncertainties may influence our ability to correctly interpret model results. For

example, overly rapid cross tropopause transport of NOx into the lower stratosphere could
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certainlyaffectour interpretationof themodelsresponseto airplaneemissions. Similarly, overly
rapid transport by convectionfrom the surfacecould affect our perceptionof the relative
importanceof surfaceemissionof NOxto thatof aircraft.

Laterversionsof thetransportmodelsfrom GISS/Harvard/UCIand NCAR (documentedin the
WCRPintercomparisons)shownoticeableimprovementsin the Rn simulation,whencomparedto
thesimulationsdescribedhere,whichuseearlier,lessaccuratemeteorologyto drive theCTM. An
obviousimprovementto theGMI modelingeffortwouldbeto utilizethesemorerecentdatasetsfor
troposphericsimulations.Thisupdateto themorerecentmodeldatasetsis in progress.

4.2.2.3 NOy Tracer Study: Evaluation of Large-Scale Transport in the Upper
Troposphere

Description of the Experiment

The NOy tracer study was designed to identify some important modeling issues that need to be

addressed in simulations of subsonic aircraft effects on ozone. Like the Rn study, this study is

designed to compare the effects of transport processes, but in this case focusing on the processes

affecting the amount of odd-nitrogen in the upper troposphere. The chemical family NOy (sum of

NOx and its oxidation products) is conserved with the exception of precipitation and surface-

deposition of soluble or sticky components such as HNO3. By focusing on NOy, we avoid

uncertainties associated with transformation between NO_ and NOy. NOy is emitted by aircraft,

lightning, and surface sources (combustion, soils), and is also transported down from the

stratosphere to the troposphere. For the present simulations we defined each source as follows:

Aircraft Emissions: A source of 0.46 Tg N yr -1 was specified on a 1° latitude x 1° longitude x
1 km altitude grid with monthly resolution for 1992. This source is described in detail in

Chapter 2; it includes emissions from both scheduled aircraft [Baughcum et al., 1996a] and

military and non-scheduled aircraft [Metwally, 1995]. An error was subsequently discovered
in the way that NOx from military and non-scheduled aircraft was calculated. Table 2-3 reflects

the corrected NOx values.

Stratospheric Source: Seasonally invariant flux of 0.45 Tg N yr-I was assumed across the

tropopause [Ko et al., 1991]. This flux was specified in IMAGES by imposing a fixed

concentration in the top model level (50 mbar) and scaling the resulting tropospheric NOy
concentrations by the ratio of the calculated cross-tropopause flux to 0.45 Tg N yr -1. In the

other models, the cross-tropopause flux was imposed by a spatially uniform, time-independent

source of NOy in the middle stratosphere.

Lightning Source: A global lightning source of 5 Tg N yr -1 was assumed with monthly

temporal resolution. This source was distributed geographically using the ISCCP convective

cloud top data for 1983 to 1991 [Rossow and Schiffer, 1991] and the parameterization of Price

and Rind 11992a, b; 1993] relating lightning flash frequency to cloud top height. C-shaped

vertical distributions of NOx emissions from lightning (shown in Table 4-3) were assumed on

the basis of cloud-ensemble model [Tao and Simpson, 1993] calculations by K. Picketing
[1996].
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Surface Source: Three types of surface emissions were included: emissions from fossil fuel

combustion (21.0 Tg N yr-1), biomass burning (4.9 Tg N yr-1), and soils (5.5 Tg N yr-i).

Emissions from fossil fuel combustion [Benkovitz et al., 1996] were specified as a time-

independent source with 1" x 1° resolution. The biomass burning source and the soil source

[Yienger and Levy, 1995] were specified with 1° x 1° spatial resolution and monthly temporal
resolution based on the Global Emissions Inventories Activity (GEIA) inventory.

Removal of NOy from the atmosphere by deposition was parameterized as a first-order loss

dependent only on altitude. The lifetimes of NOy against deposition were interpolated from the

following values [Logan et al., 1981 ]:

Ground to 800 mbar 1 day

600 mbar 5 days

500 mbar 10 days

400 mbar 18 days

300 mbar 38 days

200 mbar no loss

This representation of NOy deposition is greatly oversimplified in that it does not account for the

sensitivity of NOy deposition to the chemical partitioning of NOy (HNO3 is the main depositing

component of NOy) or to the geographical distribution of precipitation. As a result we may expect
to overestimate the contribution of surface sources to NOy in the upper troposphere, because the

coupling between upward motions and scavenging is not accounted for [Rodhe, 1983; Giorgi and
Chameides, 1986; Balkanski et al., 1993]. Aircraft contributions to NOy in the upper troposphere

should be less affected by this problem because the removal of NOy from the upper troposphere is

controlled more by large-scale subsidence (resolved by the models) than by precipitation

scavenging.

The models participating in the NOy tracer study were IMAGES, Harvard/GISS, GISS GCM 2'

(new version of the NASA GISS GCM ]Rind and Lerner, 1996]), and GMI with two different

sets of meteorological fields (CCM2 and UCI). Descriptions of these models, with exception of

the new GISS GCM, are given in Section 4.2.1. Each model conducted four separate simulations

covering the different NOy sources listed above. The simulations were conducted for two years,

except for the stratospheric source simulation which was conducted for 3 to 5 years. The first year

(or two) was used for initialization, and results were archived from the last year.

Model Results and Discussion

Figure 4-9 compares the concentrations of aircraft NOy simulated by the different models at 250
mbar. 50% of total aircraft emissions are released in a narrow altitude band between 200 and 270

mbar (10- to 12-km) [Baughcum et al., 1996a]. The highest concentrations in Figure 4-9 are

found at northern mid-latitudes where the emissions are concentrated. In this region, the NOy

concentrations differ by a factor of 5 among models. Some of the difference appears to reflect the

coarse vertical gridding of the models; interpolation of the aircraft source on the model grid induces

numerical diffusion and also aliases the actual altitude of emission. This point is illustrated in

Figure 4-10 with the zonal mean concentrations of aircraft NOy in the different models given as a

function of altitude and latitude (model gridpoint altitudes are also shown on the Figure). In the

GISS models (Harvard, GISS 2', GMI/UCI), which have vertical resolutions coarser than 100
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mbar,theverticaldistributionof aircraft NOy in the upper troposphere is defined to a large extent

by the model gridding. In comparison with other models, Figure 4-10 suggests that the 50-mbar

resolution of the IMAGES model may be more adequate to capture the vertical structure of aircraft
emissions.

The zonal mean concentration maxima of aircraft NOy simulated by the different models are located

at 300 to 200 mbar in the northern extratropical latitudes, and range from 40 to 200 pptv depending
on the model (Figure 4-10). These values are found to be similar to those in the AERONOX

simulations by the ECMWF model, Hamburg version (ECHAM3) and GISS models [Sausen et

al., 1995], after correcting for the higher aircraft source used in AERONOX (0.85 Tg N yr -1 vs.

0.46 Tg N yr 1). The earlier global model study by Kasibhatla [1993], which used a global source

similar to ours (0.45 Tg N yr -l) indicates a maximum zonal mean NOy contribution from aircraft

of about 500 pptv at 190 mbar, much higher than is found here. A possible explanation is that

most of the emissions in the Kasibhatla [1993] study were released at 190 mbar (the next-lower

gfidpoint in that model was at 315 mbar), where vertical mixing is slower because of its location in

or near the stratosphere. In the same way, the relatively high NOy maximum found in Figure 4-10

for the GISS 2' model (>200 pptv) could reflect the high altitude of that maximum (200 mbar).

Despite the large variations among models in the simulation of NOy in the upper troposphere, there

is close similarity in the simulated large-scale vertical gradients between the upper and lower

troposphere (Figure 4-10). For example, the aircraft contribution to NOy concentrations in surface

air at northern mid-latitudes is only 2 to 5 pptv in all models. Such similarity between models in

the computed large-scale subsidence rates had been noted previously in the WCRP93

intercomparison of short-lived tracers in global models [Jacob et al., 1996a]. Meridional transport

of aircraft NOy from mid-latitudes to the tropics and across the equator in the upper troposphere

varies greatly, however, among models. GMI/CCM2 has the most extensive meridional transport,

with concentrations of 5 to 10 pptv in the upper troposphere at southern mid-latitudes; Harvard and

GMI/UCI have the slowest, with concentrations of 1 to 2 pptv in the same region. The new GISS

meteorology, (2') used in the GMI model shows more extensive mixing into the upper troposphere

of the southern tropics. IMAGES appears to have anomalously high interhemispheric transport in

the lower stratosphere. Large differences among global 3-D models in the simulation of meridional

transport in the upper troposphere had also been noted in the previously cited WCRP

intercomparison.

Zonal mean concentrations of NOy originating from different sources are shown for July in Figure

4-11 for the GMI/CCM2 model. In this and the other models, we find that the zonal mean

contribution of aircraft to total NOy in the upper troposphere at northern mid-latitudes is about 10%

in summer and 15% in winter. Most of the NOy in the upper troposphere at northern mid-latitudes

is from surface sources and lightning; the contribution from the stratosphere is small and

comparable to the aircraft contribution, although it increases rapidly above 200 mbar. The

AERONOX model simulations indicated a 30-50% relative contribution of aircraft to zonal mean

NOy levels in the upper troposphere at northern mid-latitudes [Sausen et al., 1995], much higher

than is found here. The discrepancy is due in part to differences in the magnitude of the aircraft

source, and also more interestingly to differences in the influence of the lightning source. In the

AERONOX simulations, lightning accounts for only --10% of NOy in the upper troposphere at

northern mid-latitudes in summer; whereas in our simulations it accounts for 30-50%. There may

be significant differences between AERONOX and the present simulations in the specification of
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lightningNOx emissionsat northernmid-latitudes, Also, the AERONOX simulationsassumed
thatlightningemissionsarereleaseduniformly in theconvectivecolumn,whereaswe assumea C-
shapeddistribution(Table4-3) which wouldenhancethe influenceof lightningNOxin theupper
troposphere.

The modelspresentedhere and the AERONOX studiesboth indicatea major contributionof
surfacesourcesto NOy in the upper troposphere. We have,however, little confidencein our
ability to representthis sourcebecauseof thecrudenessof theparameterizedNOyremoval. Since
HNO3 is the principal depositingcomponentof NOy, it is critical to resolvethe chemical
partitioningof NOy. Anothercritical issueis quantificationof the fractionof HNO3 scavenged
duringwetconvectivetransport.

Conclusions and Recommendations

• The vertical grid resolution of the model is likely a critical issue when simulating the effect of

subsonic aircraft emissions on NOx concentrations in the upper troposphere. A vertical

resolution of at least 1-km between 8- and 14-km altitude may be necessary to resolve the

vertical distribution of aircraft emissions and the resulting chemical perturbations.

• The relative perturbation of aircraft emissions to NOx in the upper troposphere depends on the

relative contributions of lightning and surface sources to the NOx budget. Quantifying the

influence of these two sources on NOx levels in the upper troposphere is an integral part of a

subsonic aircraft assessment.

• Our results suggest that aircraft make a much lower contribution to NOy levels in the upper

troposphere than was previously concluded by AERONOX. The difference is due in part to
lower aircraft emissions in our simulations (0.46 Tg N yr -I vs. 0.85 Tg N yr-1), and also to

differences in the contribution of the lightning source. There is considerable uncertainty

regarding the magnitude and spatial distribution (vertical and horizontal) of NOx emission from

lightning. Narrowing down this uncertainty should be a top research priority.

• Both our simulations and those of AERONOX indicate a major contribution of surface sources

to NOy levels in the upper troposphere at northern mid-latitudes. This source may be
overestimated in both studies due to inadequate accounting of the efficient scavenging of HNO3

in wet convective updrafts. Critical uncertainties that need to be addressed are the chemical

partitioning of NOy (particularly in the boundary layer, where HNO3 is prone to deposition)

and the efficacy of HNO3 scavenging in wet convective systems.

4.2.2.4 Comparison of IMAGES and Harvard Models with Observations

Evaluation of the ability of a model to reproduce observed features of the atmosphere is a

prerequisite for use of the model in an assessment mode. We describe here evaluation of the

IMAGES model and the Harvard model. An earlier version of IMAGES was evaluated with a

variety of atmospheric observations in Mtiller and Brasseur [1995]. The version of IMAGES used

for this assessment had been somewhat modified relative to the older version, and there are

considerably more data available now for model evaluation. The Harvard model is a global version

of the model described in Jacob et al. [1993] with updated chemistry, and will be described in

detail in a later publication [Wang, personal communication]. The models were evaluated with the
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same data: (1) the methyichloroform lifetime; (2) surface data for carbon monoxide from about 30

sites [P. Novelli, personal communication]; (3) ozone profiles for 18 sites [J. Logan, personal

communication] and surface data from about 25 sites [Oltmans and Levy, 1994; J. Logan, personal

communication]; and (4) aircraft data for NO, HNO3, and PAN, provided on a grid on 5 ° in

latitude and longitude, and 1 km in altitude [J. Bradshaw, personal communication]. The data for

CO and ozone are generally based on several years of measurement, and should represent

climatological means. The observations of NO species are from campaigns, and cluster in

particular seasons and regions of the globe as shown in Figure 4-12. Vertical profiles were

derived from 15 regions for June-October, and 9 regions for December to March (Figure 4-12); the

profiles cannot be considered climatological means. Many of the campaigns were large scale

surveys, so that many regions with data have extremely limited sampling. The profiles extend to

only 7 km for data from Canada, Alaska, and the Amazon, and to about 11 km for the US, western

Pacific, Brazil, and south tropical Atlantic.

IMAGES

• OH and CO: The lifetime for methylchloroform due to reaction with OH is 4.2 years in

IMAGES (for 200 to 1000 mbar). Prinn et al. [1995] derived a lifetime due to OH of 4.9 ±

0.2 years (for 200 to 1000 mbar), based on an analysis of observations of methylchloroform

and allowing for an ocean sink; their combined lifetime (OH + ocean) was 4.6 ± 0.2 years.

The analysis of Prinn et al. [1995] implies that the mean OH concentrations in IMAGES are too

high by about 10%. IMAGES systematically underestimates CO, by as much as 20% in the

NH. The seasonality of CO is reproduced reasonably well, but the winter-spring maximum is
1 to 2 months early in the NH.

• NO, HN03 and PAN: Several general conclusions emerge from the comparison of IMAGES

with nitrogen oxide observation. The model is in reasonable agreement with NO profiles from

northern mid-latitudes and from the western Pacific below 7 km, except for an overestimate of

near-surface continental values. The model overestimates HNO3 for the western US, and

Canada. Concentrations of PAN are in good agreement with the data for the South Atlantic,

Canada, and Alaska, but are too high in the upper troposphere off Asia. It tends to

underestimate NO above 8 km off the Asian Coast in March, but not in October (refer to Figure

4-13). The model also underestimates NO above 8 km over the southern tropical Atlantic, by

as much as a factor of 2, while it agrees well with the data below 6 km; the model

overestimates HNO3 above 6 km in this region, so the NO/HNO3 ratio is much too low

(Figure 4-13, dashed lines show IMAGES results). The ratio is too low also off the coast of

Japan and Hong Kong. Difficulties in simulating observations of the NO/HNO3 ratio using

current photochemical schemes were also discussed in Chapter 3.

• Ozone: A major characteristic of the distribution of tropospheric ozone is the seasonal pattem;

for northern mid-latitudes there is a broad maximum in ozone in the middle troposphere

extending from May to August. This changes to a spring maximum in the upper troposphere,

and at lower latitudes [e.g., Logan, 1985]. IMAGES appears to have about the correct annual

mean amount of ozone for northern mid-latitudes. However, for 30-75°N below 400 mbar,

the model tends to be too high for December to March, and too low from about May to August

(e.g., Figure 4-14). The discrepancies are about 10 to 20 ppbv out of 40 to 60 ppbv. The

model's seasonal cycle above 800 mbar peaks in early spring, 2 to 3 months earlier than the
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data. Comparisonswith datafrom surfacesitesat several altitudes in southern Germany show

that the model has a summer maximum in the boundary layer, but a spring maximum by 700

mbar. The model reproduces the seasonal cycle in surface ozone quite well at most of the

northern remote sites, with a tendency for the spring maximum to be 1 to 2 months early. The

model significantly underestimates ozone at 200 mbar in winter and spring for latitudes above
45 °N.

In the northern sub-tropics, the model is much too high in December to April, primarily above

600 mbar, with discrepancies of a factor of 2 at 200 mbar; the model is too low in May and

September below 400 mbar, but in reasonable agreement for the rest of the year. In the

southern tropics, the model is too low most of the year at Natal below 300 mbar, with largest

discrepancies (-20 ppbv) in September to February (Figure 4-14); it is also too low at Samoa

below about 400 mbar for October to June. The model tmpopause appears to be too low over

Samoa. The model is in excellent agreement with the stations at southern mid-latitudes, but is

too low below 600 mbar over the Antarctic.

Harvard

• OH and CO: The lifetime for methylchloroform is 5.5 years, indicating that the globally

averaged OH is about 10% too low. The model underestimates CO in winter and spring at

middle and high latitudes of the NH, but matches the late summer minimum reasonably well; it

reproduces the data from the sub-tropics and tropics, but systematically overestimates CO at

southem mid-latitudes.

• NO, HN03 and PAN: The agreement for the Harvard model for NO is about the same as that

for IMAGES, as shown in Figure 4-13. The major difference between the model profiles is

that the Harvard model has much lower NO in winter at latitudes above 450N. HNO3 is too

high almost everywhere, except the lower troposphere over the south tropical Atlantic, and near
the surface over the continents. The Harvard model also predicts ratios of NO/HNO3 in the

upper troposphere that are too low. The model profiles are quite different for HNO3, however,

likely a consequence of the treatment of rainout of soluble gases. The Harvard model generally

has higher concentrations than IMAGES in the lower half of the troposphere, while IMAGES

has higher concentrations in the upper troposphere (Figure 4-13). PAN concentrations are in

reasonable agreement for profiles at northern mid-latitudes, except that the model is too high in

the boundary layer for Alaska and Canada. The model overpredicts PAN in the upper

troposphere over Hawaii and the US, and for the whole troposphere off the coast of Asia in

fall; it underpredicts PAN at about 6- to 10-km over the region of Ascension Island, but

matches the low values in the marine boundary layer. The model captures the low values of

PAN in the more tropical regions off the coast of Asia in the fall.

• Ozone: The Harvard model reproduces the distribution of ozone in the middle troposphere of

the NH rather well, as shown for two stations in Figure 4-14; it captures the broad summer

maximum at middle and high latitudes, and the shift to a spring maximum at the Hilo Pacific

site. The model underpredicts, by 10 to 20 ppbv, the amount of ozone for 500 mbar in the

middle of the year for the stations with the highest concentrations, Wallops Island,

Hohenpeissenberg, and Sapporo. It also falls to capture the summer minimum in the lower

troposphere at the more southerly Japanese stations. The major deficiency of the Harvard
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modelwith respectto theozonedistributionis thatthemodel tropopauseis too high outsideof
thetropics, aconsequenceof the low verticalresolutionof themodel (seeFigure 4-1). The
model layerat ~200mbaris in thetroposphereall year,with correspondinglylow valuesof
ozone(Figure4-14). Consequentlythemodelgrosslyunderestimatesthe amountof ozoneat
200mbarfor latitudeshigherthan35°, andunderestimatesozoneat 300mbarfor moststations
at latitudeshigherthan40". Anotherresultof the low verticalresolutionof themodel is that
verticalprofiles for ozoneareoften too uniform, with little increasein ozoneat the higher
altitudes.

Themodelunderpredictstheamountof ozoneabove6km overNatal,particularlyin Augustto
December(e.g.,Figure4-14). Thediscrepancyis asmuchas20 to 25 ppbv out of 75ppbv.
Themodelis asmuchas10to 15ppbvtoohighbelow2 km. Themodelis moresuccessfulin
reproducingthe low valuesof ozoneover Samoa,but it underpredictsozonein the upper
troposphere,by 5to 15ppbvout of 40 ppbv in Octoberto January. Themodeloverestimates
theamountof ozoneat thesurfacefor all thetropicalstations,by asmuchas 10to 20 ppbv.
Themodelseriouslyunderpredictsozoneat Pretoriaabove4 km, but matchesthe datafrom
southernmid-latitudesquitewell, exceptin theuppertroposphere.

In conclusion,both the IMAGES and Harvardchemicaltransportmodelshavedifficulties with
representingthe limited amountof dataavailablefor nitrogenoxides in the upper troposphere.
IMAGESdoesnotgetthecorrectseasonalcyclenor thenear-tropopausevaluesfor ozone.As will
be discussedfurther in Section 4.4, the disagreementswith observationssuggest strong
reservationsabout the capabilitiesof these models to accuratelyrepresentthe effects on
troposphericchemistryfrom aircraftemissions.

4.2.3 SENSITIVITY STUDIES

4.2.3.1 Description of the Experiments

A series of sensitivity studies has been designed to examine the effects of uncertainties in our

knowledge of tropospheric processes on the ozone changes calculated from aircraft emissions.

These studies primarily use the IMAGES chemical transport model, although a subset of these

studies has also been calculated with the Harvard/GISS model. In these studies, the baseline

calculation for the current atmosphere is based on the standard version of each model, i.e., there

was no attempt to standardize the chemistry or treatments of input parameters. These calculations

stress sensitivity to uncertainties rather than absolute values of the environmental effects.

Table 4-4 describes sensitivity cases examined by the two models. Particular emphasis is given to

the significant uncertainties associated with the lightning production of nitrogen oxides and the

effect of convection on upper tropospheric concentrations. The lightning source is poorly known,

with a likely value ranging from approximately 2 to as much as 12 Tg N yr -1 . Cases 3A through D

examine a range of 2 to l0 Tg N yr I under two different assumptions of the spatial distribution of

NOx production (based on Turman and Edgar [1982] and on an updated version of Price and Rind

[1994], as discussed in Section 4.2.2.3). In their baseline calculations, the IMAGES model

assumes lightning production of 5 Tg N yr -I based on Turman and Edgar [1982], while Harvard

uses 4 Tg N yr-I based on Price and Rind [1994].
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Severalothersignificantdifferencesbetweenthebaselinemodelsshouldbe notedrelativeto the
modeldescriptionsgivenearlier(Section4.2.1). Meaningfulinformationfrom theHarvardmodel
is restrictedto altitudesbelow 150mbar(about14krn) while theIMAGES modelextends to 50

mbar (about 20 km). The baseline version of the IMAGES model uses the NASA 1990 emissions

database [Wuebbles et al., 1993a, b; Baughcum et al., 1993a] while the Harvard model uses the

more recent 1992 emissions database [Chapter 2, Baughcum et al., 1996]. Although the database

for 1992 includes seasonal variations and many improvements over the earlier database, there are

only minor differences in the globally integrated amount of nitrogen oxides produced from aircraft

(0.46 Tg N yr -1 for the 1992 database compared to 0.44 Tg N yr -l for the 1990 database). In

Case 2, both IMAGES and Harvard use the 1992 database. With the exception of Case 8 (1992

emissions increased by a factor of five), all other sensitivity calculations with the IMAGES model
are based on the 1990 emissions database.

The large uncertainties in model treatment of convection processes are partially captured by two

cases (4A and 4B) that increase and decrease, respectively, the rate for convection to the upper

troposphere by a factor of two.

Heterogeneous chemistry in the troposphere, in particular the reaction of N205 with water to form

HNO3, is examined in Case 5. The effect of incompletely representing hydrocarbon chemistry in

the model is examined in Case 6, largely motivated by the fact that some of the earlier published

studies of aircraft effects did not include NMHCs. The effect of reactions that increase cycling of

nitrogen oxides is examined in the IMAGES model by increasing the photolysis rate of nitric acid

by a factor of three.

In order to examine potential nonlinearities associated with future increases in global emissions of

nitrogen oxides from aircraft, Case 8 examines the effect of increasing the 1992 emissions by a

factor of five. There was no attempt in this assessment to examine more realistic representations of

future emissions.

4.2.3.2 Model Results and Discussion

Effects of Sensitivity Analyses on Derived Background Atmosphere: Figures 4-15 and 4-16

compare distributions at the corresponding latitudes and longitudes from the sensitivity studies

using IMAGES with the observations at Ascension Island and the eastern US, respectively.

Comparisons with the NO distribution are generally better with the larger lightning source of NOx,

but the comparison with the HNO3 data becomes even worse. Reducing convection or increasing

NOx recycling also improves the comparison in the upper troposphere with NO, but with no

meaningful impact on the poor comparison with the HNO3 data at Ascension Island. The

sensitivity studies have a minor effect on the distribution of ozone at mid-latitudes, with only a

small variation, as shown in Figure 4-17. The model results are always low compared with the

data at Wallops Island, but do show a better comparison with data at Natal when more lightning or

reduced convection are used. It should be noted that these are examples of the effects of model

sensitivity and are not in any way conclusive statements about what is needed to better explain

observed distributions. In addition, the representativeness of the existing measurements remains to

be verified.

Figures 4-18 through 4-22 compare derived distributions of NOx and ozone from the IMAGES

and Harvard models for Case 2 using the 1992 aircraft emissions. There are many similarities in
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the derived distributions of NOx in the two models. Notable differences occur outside North

America, where the Harvard model derives larger peak amounts of NOx at 300 mbar than the

IMAGES model. The zonally averaged distributions for NOx are similar within the constraint of

the low upper boundary in the Harvard model. As mentioned earlier, the Harvard model has much

less variation in concentrations of ozone in both the 300 mbar latitude and longitude contours and

in the zonally-averaged distribution.

Further discussion on the effect of individual sensitivity studies on the background atmosphere are

also given in the next section.

Sensitivity Analyses of Aircraft Effects on NOx and Ozone: Table 4-5 gives the changes in ozone

in January and July at altitudes from the ground to 150 mbar from the IMAGES model for each of

the sensitivity studies. Shown are calculated changes in ozone due to aircraft at mid-latitudes in the

NH, the changes averaged over each hemisphere, and the changes averaged globally. For the

cases also calculated with the Harvard model, Table 4-6 shows the globally averaged changes in

nitrogen oxides (NOx = NO + NO2) and ozone from both models for July. Table 4-6 gives the

changes in NOx and changes in ozone in percent change (part a) and in absolute changes in mass

(part b). Also given in Table 4-6 are the changes from 400 to 150 mbar (in parentheses) as well as

the changes from the ground to 150 mbar. The results for each of the sensitivity analyses are
examined below.

Cases 1 and 2 Baseline Models: The IMAGES calculations for the 1992 emissions case shown in

Table 4-5 indicate zonally averaged changes at mid-latitudes of 2.1% and a globally averaged

change of about 1.15% for altitudes below 150 mbar, with the largest changes occurring in the

summer. Assuming no changes in ozone from aircraft emissions above the top altitude of the

IMAGES model would imply a total column change of only 0.13%. As expected, the 1992

emissions give a slightly larger effect on ozone in the IMAGES model than the 1990 emissions.

As seen in Table 4-6, the IMAGES and Harvard models have quite different responses to the 1992

aircraft emissions. Although the globally integrated changes in ozone are similar, the

corresponding changes in nitrogen oxides are quite different, with the Harvard model giving less

change (2.2% in July) than the IMAGES model (4.3%). As seen in the figures described below,

the changes in NOx and ozone are also quite different spatially. Table 4-6 and these figures also

indicate that the largest increases in NOx and ozone do occur in the upper troposphere, where

maximum emissions occur, as expected.

Figures 4-22 and 4-23 show the changes in NOx from the IMAGES and Harvard models for the

effects from 1992 aircraft emissions, while Figures 4-24 and 4-25 show analogous results for the

change in ozone. The results from the Harvard model in general show much smaller gradients and

the effects on ozone are more dispersed than the IMAGES model. Differences in the treatment of

convection and other transport processes may explain much of this, but the low resolution of the

Harvard model in the upper troposphere also affects this.

Many aspects of the calculated effects of aircraft emissions are in strong agreement with earlier

published studies. The calculated effects on nitrogen oxides and ozone are much larger in the NH

than the SH, at latitudes corresponding to the bulk of the aircraft emissions. For the 1992 aircraft

emissions, IMAGES calculates a maximum change in NOx of more than 80% (about 40% zonally

averaged) at 250 mbar and mid-latitudes of the NH, while the Harvard model gives about a 100%
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increase. The largest effects on ozone are in the upper troposphere at subsonic aircraft cruise

altitudes (about 5.5% increase at 250 mbar in the IMAGES model for the 1992 emissions).

The overall sensitivity of the IMAGES model to aircraft is larger (about 5% maximum ozone

change in the upper troposphere in this study compared with about 4.5%) than in their previously

published analyses [Brasseur et al., 1996]. Several changes have been made to the model

(including a different representation of lightning) since those calculations were done.

Changes in the tropospheric inventory of NOx and ozone from the two models are much smaller

than those determined from the 2-D and 3-D models used in the AERONOX assessment in Europe

[Schumann, 1995]. However, the emissions used here are appreciably smaller than emissions

used in that study. The IMAGES model gives an integrated change in nitrogen oxides and ozone

of 3.6 Gg N and 3.77 Tg 03 due to the 1992 aircraft emissions, respectively, while the Harvard

model gives 2.3 Gg N and 2.8 Tg 03 (integrated over the entire grid of each model). Also, as

discussed earlier, the background atmospheres, including the assumed NOx production from

lightning, are quite different from the AERONOX studies.

Case 3 Effects of Lightning: The effect of uncertainties in lightning NOx production on upper

tropospheric NOx are the same as or greater in magnitude than the aircraft impact on NOx in this

region. In the tropics, the uncertainty due to lightning is much larger than that from aircraft.

The uncertainties in representing lightning production of NOx assumed in Cases 3A-3D have a

significant effect on the background atmospheres and on the derived effects from aircraft. For

example, in the NH summer with the reduced lightning scenario (Case 3A) in IMAGES, NOx in

the upper troposphere decreases by 10 to 15% over much of North America and the North Atlantic,

and by <10% over Europe. Some portions of the tropics show around 50% reduction in NOx. In

January, the NOx reduction is 5 to 10% in the upper troposphere over North America'and Europe

and as much as 50 to 60% in the tropics. There is also a small impact on the background levels of

ozone.

When the lightning source is doubled (Case 3B), zonal mean values of NOx in the NH mid-latitude

upper troposphere increase by 20% with a corresponding ozone increase of 6 to 8%, which is

slightly greater than the aircraft impact. In January, NOx in this region increases by 0 to 10% and

ozone increases by 2 to 4%, which is about twice the aircraft impact. In the tropics NOx increases

in this scenario up to 90%, with corresponding ozone increases of up to 24%.

The IMAGES model sensitivity runs were performed using the Turman and Edgar lightning

emission scenario that maintains constant NOx injection with altitude. Recent analyses suggest that

a C-shaped NOx profile is more likely, at least over the continents, where downdrafts are more

vigorous. If such profiles were used instead, the sensitivity results would likely show greater

changes in NOx and ozone in the upper and lower troposphere and lesser changes in the middle

troposphere than are seen in the baseline IMAGES simulations. Case 3C is a sensitivity simulation

run with the Price and Rind lightning parameterization, including the use of a C-shape vertical

profile. In this run it is difficult to determine how much of the changes are due to the different

parameterization and how much are due to the use of the different vertical profile. In this

simulation large increases (>100%) in upper tropospheric NOx are seen in the tropics. As much as

a 70 to 80% increase at 60 to 700N results with this formulation in summer. Decreased NOx is

seen in the lower and middle troposphere in the tropics and in the mid-latitudes of the SH. This

scenario yields a maximum of about 10% increase in ozone in the tropical upper troposphere and
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aboutthesameincreasein theNH mid-latitudeflight corridorregionin summer. This uncertainty

is about twice the ozone impact of aircraft emissions.

The effects of aircraft emissions are increased by about 20% (from 0.84% global averaged change

in tropospheric ozone to 1.01%) when the lightning source is reduced in the IMAGES model (Case

3A). In contrast, the effect of aircraft emissions is decreased by about 20% in IMAGES and 27%

in the Harvard model when the lightning source is doubled (Case 3B in IMAGES, 3D in Harvard).

Results shown in Table 4-6 indicate large differences in model sensitivity to aircraft still remain

when both models use the same lightning source.

Case 4 Effects of Convection: Two sensitivity studies were conducted with the IMAGES model

by halving (Case 4A) and by doubling (Case 4B) the rate of convective transport in the model.

Case 4B was also evaluated with the Harvard model. Convection appears to be a process that must

be simulated as accurately as possible in the assessment model. The results of this sensitivity test

show that changes of a factor of two in convective transport over major air traffic corridors of the

NH in summer cause changes in upper tropospheric ozone greater than the perturbation in ozone

due solely to aircraft emissions. In NH summer (July) convection reduced by a factor of two

caused more than a 25% increase in NOx at 250 mbar over broad areas of the remote troposphere.

This result is likely due to less downward transport of NOx from the upper troposphere in the

reduced convection scenario. This increase in NOx in the upper troposphere causes greater

photochemical ozone production, which along with reduced downward transport of ozone, causes

ozone mixing ratios in the upper troposphere to increase by as much as 30% in the tropics (15% in

the zonal mean) and by 5 to 10% in the NH mid-latitudes (refer to Figure 4-17). In contrast, the

maximum ozone perturbation in the upper troposphere due to aircraft emissions is 4 to 5%.

In January, NOx increased by >30% in the upper troposphere over the major areas of large-scale

subsidence west of the continents of South America, southern Africa, and Australia (areas of no

deep convection). Apparently the upper troposphere throughout the SH contains more NOx under

the reduced convection scenario because of less downward convective transport. The net result

appears to be most evident in these major subsidence regions. In these same regions ozone mixing

ratios increased >20%. Over NH air traffic corridors ozone increases by about 5% in the reduced

convection scenario compared with a maximum of 1.5% increase due to aircraft emissions, again

demonstrating the importance of correctly computing convective transport.

While having a significant effect on the background atmospheric levels of NOx reducing or

increasing convection has a smaller effect on the derived changes in nitrogen oxides and ozone

resulting from aircraft emissions. Reducing convection increased the effect on tropospheric

nitrogen oxides and ozone (altitudes less than 150 mbar) by about 8.7% and 8%, respectively, in

the IMAGES model. Doubling the convection reduced the effects on NOx and ozone by similar
amounts in both the IMAGES and Harvard models.

Case 5 Effect of Heterogeneous Chemistry: Removing the N205 + H20 heterogeneous reaction in

the IMAGES model has a significant effect on NOx concentrations, particularly in the winter

hemisphere, The sign and magnitude of the calculated changes in background atmosphere

concentrations are in agreement with earlier studies [Dentener and Crutzen, 1993]. The effect of

neglecting this reaction relative to the aircraft perturbation is to reduce the sensitivity of atmospheric

composition to aircraft emissions. The change in ozone is reduced by about 10% (from a 0.97%

change, globally averaged, to 0.87%), with greater effect in winter than in summer.
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Case 6 Effect of Hydrocarbon Chemistry: Although aircraft hydrocarbon emissions are minor

relative to other sources, inclusion of hydrocarbon chemistry is important in determining the effect

of NOx emissions on 03 (see Section 3.2.2.2). Leaving NMHC chemistry out of the IMAGES

model has a significant effect on the levels of nitrogen oxides in the background atmosphere,

resulting in more NOx in the lower troposphere and less in the upper troposphere (due to creation

of PAN and other organic nitrates). At 250 mbar, NOx concentrations are lower by 30 to 40% at

mid-latitudes and up to 80% in the tropics. Removing hydrocarbon chemistry from the model

reduces the sensitivity of ozone to aircraft NOx emissions appreciably (from 0.97% to 0.61%

globally and annually averaged).

Case 7 Effect oflncreased NOx Recycling: The fraction of UT NOx that is due to aircraft depends,

in part, on the rate of removal of NOx in that region. Processes which recycle NOx will decrease

the effective removal rate and influence the overall UT NOx budget. Observations from a number

of field missions suggest that current models are missing some important NO x recycling processes.

In an attempt to introduce a recycling mechanism we have increased the photolysis rate of nitric

acid by a factor of 3 in IMAGES. This change is seen to have a large impact on NOx in the upper

troposphere and lower stratosphere. NOx levels more than double in the lower stratosphere and

increase by 30 to 70% in the upper troposphere. The sensitivity to aircraft emissions is reduced

giving a change in globally averaged tropospheric ozone of 0.78% (compared to 0.97% in the

baseline case).

Case 8 Effect of 5 Times the 1992 Emissions: Increasing the 1992 emissions by a factor of 5

results in a proportionately larger change in nitrogen oxides arising from the aircraft emissions but

less than a proportional change in the ozone. NOx increases by 23.4%, globally averaged for July,

in the IMAGES model (compared to 4.3% in the baseline 1992 emissions case) and by 10.9% in

the Harvard model (compared to 2.2% in the baseline model). Globally averaged ozone increases

by 4.4% in the IMAGES model and 3.9% in the Harvard model. Integrated changes in absolute

amounts of NOx and ozone are 20.2 Gg N and 15.0 Tg O3, respectively, from the IMAGES

model in July and 10.9 Gg N and 12.0 Tg 03 from the Harvard model, indicating that the large

difference in the NOx perturbation is not due simply to having significantly different levels of

background NOx.

The IMAGES model gives more than a 400% increase in NOx in the upper troposphere relative to

the baseline case while the Harvard model gives over a 700% increase. The effect of the aircraft

emission is to increase upper tropospheric ozone by as much as 14% in the IMAGES model and by
as much as 17% in the Harvard model.

4.3 EFFECTS ON CLIMATE

4.3.1 DESCRIPTION OF MODELING TOOLS

4.3.1.1 Description of Models

For this assessment, two computations were made: the radiative forcing at the tropopause

associated with the different aircraft emissions, and the climatic response to those radiative

forcings. The GISS GCM(s) and radiation code were the particular modeling tools involved. The

GISS GCMs include the 9-layer model which extends from the surface into the lower stratosphere
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(10 mbar) [Hansen et al. 1983], and the 23-layer Global Climate Middle Atmosphere Model

(GCMAM) which extends from the surface into the mesosphere (0.004 mb or 85 km) ]Rind et al.,

1988]. The models were used at 8 ° x 10 ° horizontal resolution; both include a complete set of
surface and atmospheric responses, including variable sea ice, cloud cover, etc. The ocean is

characterized by a 65m mixed layer with specified ocean heat transports [Hansen et al., 1984].

Both versions use the same radiation code, which has been tested in an inter-model comparison,

and performed well compared to line by line calculations and other radiation models being used in
GCMs [Cess et al., 1993].

The GISS GCM predicts a 4.2°C surface temperature rise for doubled atmospheric CO2, which

translates to a forcing of 4.4 W m -2 at the tropopause. This is at the high end of the IPCC [1992]

estimate of likely atmospheric sensitivity, given as a range of 1.5°C to 4.50C; however, it is near

the average of the 10-15 GCMs used for climate change studies [IPCC 1990; 1992]. The GISS

models have considerable tropical sensitivity, such that the high latitude/low latitude amplification

is only about a factor of two for doubled CO2, less than the result from some models (e.g., the

Geophysical Fluid Dynamics Laboratory (GFDL) model), but similar to others (e.g., United

Kingdom Meteorological Office (UKMO)) [Rind, 1987]. The model also produces maximum

doubled CO2 warming in the tropical upper troposphere [Hansen et al., 1984], a result which is

absent in simulations with reduced tropical surface warming [IPCC, 1990]. The proper tropical
sensitivity is unknown ]Rind, 1995].

4.3.1.2 Description of Modeling Techniques

To calculate the radiative forcing at the tropopause, the GISS GCM is run with altered atmospheric

composition for one year, to allow for seasonally and diurnally changing solar zenith angle.

Tropospheric temperatures are kept fixed, but stratospheric temperatures are allowed to change; the

radiative forcing calculated at the tropopause is therefore the value adjusted for radiative response
in the stratosphere. Given the rapid response time in the stratosphere, it is felt that this is the more

appropriate value for the purpose of assessing tropospheric sensitivity.

To calculate the climate response, the GCM or GCMAM is run for 50 to 75 years, for both a

control run with current atmospheric composition, and for experiments with an estimated aircraft-

induced change in composition. The long run guarantees that the sea surface temperatures have

adjusted to the imposed radiation imbalance. The result is therefore an equilibrium response to

aircraft forcing and is not meant to provide a forecast for any particular year.

4.3.2 CLIMATE SENSITIVITY STUDIES

4.3.2.1 Layered Versus Well-Mixed Forcing and GWP

Aircraft-induced radiative forcings differ from the more canonical perturbations such as altered

CO2 or solar constant in that they are not well-mixed throughout the depth of the atmosphere.

Aircraft-induced changes in stratospheric ozone, aerosols or water vapor produce a radiative

perturbation at the tropopause by affecting specific atmospheric levels. In so doing, they alter the

temperature lapse rate in the vertical, and affect clouds at high altitudes. Since the normal

procedure in calculating the tropospheric response to radiative forcing in radiative-convective

models (RCMs) is to assume an unchanging lapse rate, layered forcings violate this basic
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assumption. They therefore produce a different sensitivity of surface temperature response to

tropopause radiative imbalance than do the well-mixed forcings. The commonality of this response

to forcing in RCMs has led to the concept of the "global warming potential" (GWP) of different

gases which can be characterized by simply noting the radiative forcing at the tropopause; layered

forcings would appear to contradict this simple approach, and their surface temperature response

may have to be calculated for each particular case.

Hansen et al. [1993] used a "ghost" forcing of 4 W m -2 applied at different levels in the

atmosphere to determine how the surface responded. Their results indicated that forcing

(warming) in the lower stratosphere produced only 20% of the sensitivity of forcing applied

directly to the surface. Rind and Lonergan [1995] found that increased stratospheric water vapor

produced only about 20% of the surface temperature response expected from the resulting radiation

imbalance at the tropopause. In both cases, changes in vertical lapse rate, and cloud response at

high altitudes, reduced the climate sensitivity. Given that model cloud cover pammeterizations are

uncertain, it is possible that the model result will differ from the true atmospheric sensitivity, and

will vary between models.

Forcings induced in the upper troposphere, as would be the case for most of the subsonic aircraft

emissions, are more problematic; they are layered in initial input, but they are within the relatively

well-mixed domain of the troposphere. In an experiment with reduced ozone in both the upper

troposphere and lower stratosphere, Rind and Lonergan [1995] found that the surface temperature

response was about 50% of that expected from the tropopause radiation imbalance, implying a

surface sensitivity in-between that of stratospheric and well-mixed forcings. The sensitivity

experiments discussed below test the model response to various specific aircraft perturbations in

the troposphere.

There are additional problems associated with defining GWPs for aircraft emissions. The GWP is

"currently inapplicable to gases and aerosols that are very unevenly distributed, as is the case for

tropospheric ozone and aerosols and their precursors" [IPCC, 1994, 1996]. The short lifetime of

NOx, for example, can lead to large regional inconsistencies in its effect on ozone concentrations,

making its indirect GWP practically impossible to calculate with confidence. The same is true for

aircraft aerosol emissions. Carbon dioxide emissions from aircraft have a GWP of 1.0 (since

everything else is relative to CO2) by definition. Carbon dioxide emissions from aircraft amount to

2.4% of fossil fuel emissions. Water vapor is emitted by aircraft, but it has not historically been

included in GWP calculations. Its GWP would be as problematic as that for other aircraft

emissions, due to its short lifetime and large regional heterogeneity. This would be true as well for

aircraft effects such as generation of contrails or alteration of cirrus clouds.

4.3.2.2 Aircraft Water Vapor Emissions

Aircraft release 1.17 kg of water vapor for every kg of fuel burned [Lee et al., 1994]. In 1990,

1.34 x 10 tl kg of fuel were burned [Wuebbles et al., 1993a, b]; hence about 1.67 x 10 II kg of

water vapor were released. With expected passenger demand and aircraft increases in mileage, it is

estimated that 3.8 x 1011 kg of water vapor will be released annually by the year 2015 [Baughcum

et al., 1993a].

Experiments with the GISS GCMAM were performed in which water vapor was released along

flight paths in the upper troposphere [Rind et al., 1996], occurring predominantly in the NH.
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Variouswatervaporamountswerereleased,rangingfrom 1.5 timesthe2015valueto 300 times
its value. Theresultsshowedthatobservableclimateeffectswerenoticedonly whenreleaseswere
some15timesthe2015estimates(Figure4-26); with thatmagnitude,thesurfaceair temperature
responsewas a few tenths°C. Comparedto naturalvariability the predictedtemperaturerise
wouldbeobservablein thetroposphere[Shahet al., 1996].

With enhanced emissions, the aircraft signature (compared to increased atmospheric CO2)

consisted of greater increases in NH extratropical cloud cover, relative humidity and specific

humidity in the upper troposphere. The specific humidity increase however did not maximize at

upper tropospheric levels; as the climate wanned, evaporation increased, and the maximum in

additional water vapor occurred at low altitudes in the tropics. The total enhancement in

atmospheric water vapor resulted primarily from this climate feedback, emphasizing that the total

climate response can be very different from the input forcing. A similar experiment without

allowing for surface temperature feedback performed by Ponater et al. [ 1996] did not produce the

tropical water vapor response.

Because of this interaction, it is not possible to calculate what the true climate forcing was in these

experiments. However, by comparison with CO2-induced temperature changes of similar

magnitude, it appears as if the aircraft forcing had less effect on surface processes, particularly sea

ice. Increased CO2 therefore produced a greater high latitude surface temperature response,

associated with decreased sea ice, than did the aircraft forcing, even though aircraft forcing was

predominantly at high latitudes in the NH. This result illustrates that upper tropospheric, layered

forcing is comparatively less effective in influencing surface responses. Although there was

considerable longitudinal variation in the input water vapor release, there was little in the way of

longitudinal signature in response, due to the homogenizing effect of advective processes. The

results therefore also emphasize that the latitude and location of the applied forcing does not

necessarily dictate the location of the response.

4.3.2.3 Aircraft-Induced Ozone Changes

The 1992 aircraft-induced ozone change, as calculated by the IMAGES model (Figure 4-25a) was

input into the GISS 9-1ayer GCM and integrated for 50 years. The zonal average peak ozone

perturbation, on the order of 10 ppbv in the Northern Hemisphere extratropical upper troposphere,

is a change of only about 3-5% of background values. Hence the radiative forcing is extremely

small (0.0095 W m-2), and the temperature response, a global annual average change of 0.01 °C,

was less than the model's natural variability. Therefore, there was essentially no model discernible

impact associated with the ozone changes as specified.

An additional experiment was performed using the ozone changes induced by 5x 1992 aircraft

emissions, as calculated by the IMAGES model. The zonal ozone changes in this run peak at

about 10%, and on the global average, the ozone change was 3.46 times larger than for the 1992

emissions. The radiative forcing was approximately 0.033 W m -2 and the global annual average

temperature response was a warming of 0.09°C. This is on the order of the model's interannual

variability, and therefore its significance is somewhat questionable; if real, it would imply a large

climate sensitivity (3°C W -1 m2). The results are for the last 25 years of 75 year simulations (for

both experiment and control), during which time the experiment was consistently warmer, a result
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thatdid nothappenin the 1992aircraftozoneexperiment,andwouldseemto be unlikelyto occur
by chance.

Figure4-26 showstheannual-averagetemperaturechangesproducedfor the 15xpresentsubsonic
watervaporreleases(top)andthe5x 1992aircraftozonechanges(bottom). Therearesimilarities
betweentheresultsof thetwoexperiments.Thewarmingmaximizesin thepolar regionsof both
hemispheres,especiallynearthesurface;contributingto this effectis thesea-icealbedofeedback.
The surfaceresponseis thereforedominatedby systemfeedbacks,not by the locationof the
aircraftforcingwhich ispredominantlyin NH middle latitudes. Thereis coolingaloft, associated
with the greaterthermalemissionsfrom increasedwater vapor or ozone;only in the specified
ozonechangeexperimentdoesthishaveaclearNorthernHemispherebias,asthesystemresponds
by furtheralteringthewatervapordistribution.

4.3.2.4 Aircraft Soot Emissions

The aircraft emissions were calculated by Wuebbles, Rahmes and Omar [personal communication].

for an emission index of 0.02 g soot/kg fuel (based on recommendations from aircraft industry by

H. Lilenfeld and others). Hence about 2.7 x 101°g of soot were released by aircraft in 1990. The

particles are small, with diameters on the order of 0.01 to 0.05 microns; their single scattering

albedo in the visible range is also quite small, on the order of 0.02 or less, which implies that they

do little scattering, and are basically absorbing. Their impact on the net radiation budget would

therefore be positive. However, the calculated optical thickness is extremely small, with column-

integrated values peaking at about 4 x 10 -7 for a diameters of 0.03 microns at 50 to 65°N. As

calculated by the CCM3 GCM radiation code, this produces a peak response of close to 0.0025

W m -2. In the GISS GCM, assuming the sensitivity for well-mixed forcings, this would produce

a surface temperature response of a few hundredths °C, less than the model's interannual

variability.

4.3.2.5 Aircraft Contrail Simulations

Limited numerical experiments have been performed to understand possible climatic effects of

contrail cirrus on regional or global climate. Hansen et al. [1981] used a one-dimensional

radiative-convective model and found that a 2% global increase in high clouds would lead to a 1 K

surface temperature increase, which represents about one-third of the sensitivity produced by the

doubling of CO2 in the same model. Liou et al. [1990], using a two-dimensional cloud and climate

model, found that a surface temperature increase of about l°C was possible if contrail-cirrus

increased the total amount of high cloud by 5% (from 20-25%) from 20 ° to 70*N. Schumann

[1994], using a regional scale model, determined that a linear increase in surface temperature of

about 0.05°C occurred due to an increase of 0.4% in high clouds associated with contrails,

although these calculations omitted a number of global feedback processes included in Liou et al.

[1990]. Ponater et al. [1996], using the ECHAM GCM, increased cirrus cloud cover by 2%, 5%

and 10% along aircraft flight paths, and found surface air temperature changes ranging from 1°C to

4*C in the experiments. Keeping the "contrails" present all the time undoubtedly exaggerated the

results, although not allowing sea surface temperatures to adjust likely minimized the surface

temperature response.
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It is important to recognize that our ability to satisfactorily treat contrails in large-scale model cloud-

radiation schemes is still in a rudimentary state, for several reasons. Detailed knowledge of the

time evolution in contrail particle size distributions, which is crucial to greenhouse versus albedo

radiative forcing predictions, is largely lacking; the linear spatial structure of persisting contrails

represents a very inhomogeneous cloud feature; and the geographic distribution of contrails varies

significantly over regional and global scales. Mesoscale cloud models capable of treating

microphysics and radiation explicitly would be most suitable for providing parameterizations
needed by the global climate models.

4.3.2.6 Aircraft CO2 Emissions

Aircraft release 3.15 kg of CO2 per kg of fuel burned. With approximately 1.34 x 10 nl kg of fuel

burned in 1990, aircraft were therefore releasing 4.22 x 1011 kg of CO2, which is 0.42 Gt of CO2;

this equals 0.11 Gt of carbon. Over the past 30 years, assuming aircraft fuel-burning increased at

a rate of 4.6% year -_ (literally true for 1976-1992; probably an overestimate for the prior 15 years),

aircraft can be estimated to have produced about 2 Gt of carbon. In comparison, over the same

time period, industrial processes are estimated to have produced approximately 150 Gt of carbon

[IPCC 1990, 1992, 1994, 1996]. The aircraft contribution has therefore been approximately
1.5%.

The release of 2 Gt of carbon is approximately equal to 1 ppmv of CO2 over the past 30 years, or

0.033 ppmv year _. Over the same time period, industrial production has increased atmospheric

CO2 2.4 ppmv year _. The observed atmospheric increase is about one-half that amount, 1.2 ppmv

year -I , reduced from the emission value due to uptake by the oceans and perhaps the biosphere.

Assuming the same residence time for aircraft and other CO2 releases, we estimate that aircraft

have been associated with an atmospheric CO2 increase of 0.033/2 = 0.0165 ppmv CO2 year l,

over the last 30 years, for a total increase of 0.5 ppmv (in contrast to other aircraft releases, which

have short lifetimes, aircraft CO2 would accumulate). Using the same reasoning, in 1992, aircraft
emissions were increasing CO2 by about 0.05 ppmv year _.

In the GISS GCM, an addition of 300 ppm CO2 results in a radiative forcing of 4 W m 2, and a

surface temperature response of about 4.2°C in equilibrium. Usin_ this relationship, the 1992
aircraft CO2 release produced radiative forcing on the order of 3 x 10- W m -2, and an equilibrium

temperature response of similar magnitude. Over the past 30 years, an aircraft-induced increase of

0.5 ppmv would have produced radiative forcing of approximately 0.0067 W m -2, and therefore an

equilibrium surface air temperature response on the order of 0.007°C. Given the range of climate

sensitivity from different models noted in IPCC [1990, 1992, 1994, 1996], this number might be
as small as 0.0025°C, or as large as 0.009°C.

4.3.2.7 Aircraft NOx Emissions

The primary influence of aircraft NO2 is its influence on ozone. NOx, in the form of NO2, absorbs

in the visible and near infrared; the total short-wave absorption (including both tropospheric and

stratospheric concentrations) is on the order of 10 -z W m -2. The contribution from the region of

maximum subsonic aircraft release, from 200 to 300 mb, is about 1%, hence short-wave

absorption here is on the order of 10-3W m -2. Therefore, were aircraft to increase NO2 by 50% in

the upper troposphere, they would contribute a forcing of the same order (10 -3 W m -2) as CO2.
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NO2alsoabsorbsin the infrared,at around6microns,andin the 11-to 15-micronregion,but the
effectisof lessimportancethanits short-waveabsorption.

NOx is alsoassociatedwith productionof nitrateaerosols. Accordingto IPCC [1994], natural
nitratesfrom NOxhaveanopticaldepthof lxl0 -3,whileanthropogenicnitratesfrom NOx havean
opticaldepthof 2x10-3. (Theserepresentabout2% of both the natural and anthropogenic total

aerosol optical thicknesses.) A 3% NOx increase for the whole troposphere due to current aircraft

emissions would therefore increase the nitrate aerosol optical depth by approximately 10 -4 , which

is equivalent to a short-wave forcing of 2.7 x 10 .3 W m -2. A potential further effect of these

aerosols on natural cloud properties is currently uncertain.

4.3.2.8 Aircraft SO2 Emissions

Aircraft emit approximately 1 g of SO2 for each kg of fuel burned. In 1990, approximately 1.3 x

l0 II g of SO2 were emitted. This can be compared to 2.4 x 1014 g emitted each year by natural

and other anthropogenic sources [IPCC, 1996]. SO2 absorbs in the infrared somewhat better than

NO2, but its primary climate impact is associated with sulfate aerosol production. Natural and

anthropogenic sulfate aerosols produce an estimated global mean optical depth of 3.3 x 10-2; the

contribution from aircraft can therefore be crudely estimated as 1.5 x 10 -5. This is equivalent to a

short-wave forcing of approximately 4 x 10 -4 W m -2. Again, the possible additional effect of

sulfate aerosols on natural cloud properties cannot yet be determined.

4.3.2.9 Summary

The results from the climate impact experiments performed for this assessment and estimates from

other work are shown in Table 4.7. As noted above, the radiative forcing actually induced by the

water vapor release is difficult to ascertain. The realistic aircraft gaseous radiative forcings

examined here are all extremely small, resulting in surface temperature responses that are not

significantly different from the model's natural variability. The exaggerated forcing experiments

do suggest that the "aircraft footprint" will be more likely found at altitude, since the surface

response is dominated by the system feedbacks to the original forcing. Major uncertainties exist in

estimating the aircraft contrail forcing.

4.4 Findings and Future Needs

The tracer studies (Rn and NOy model calculations) and the model comparisons with available
observations of chemical constituents indicate that major uncertainties remain in current model

representations of tropospheric processes. The NOy tracer calculations suggest that the vertical

resolution is an important factor in accurately representing the upper tropospheric chemistry,

indicating that the resolution should be at least 1 km in the upper troposphere. The IMAGES

model used in the sensitivity studies possesses resolution on this order, but the Harvard model is

coarser than this.

Additional problems have been discussed regarding the chemical-transport models used in this

assessment. Many, if not most, of these problems also apply to every other existing 3-D model of

tropospheric processes that have been used to investigate the chemical effects of subsonic aircraft

emissions. For example, the use of monthly averaged winds in the IMAGES model restricts its
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ability to accuratelyrepresenttransportof traceconstituentsin thetroposphere.Also, both of the

models used in this assessment have extremely limited representations of the stratosphere,

including essentially an invariant stratospheric source of nitrogen oxides into the upper
troposphere. The studies with these models can tell us little about the effects of subsonic aircraft

emissions into the stratosphere and effects of subsonic aircraft on stratospheric chemistry. These

also do not address resulting changes in the transport of nitrogen oxides and other constituents

between the lower stratosphere and upper troposphere.

There is extremely limited data for NO for northern middle and high latitudes with which to test

models. Unfortunately, this means we cannot really assess how well the models are doing for the

NOy family north of 450N in the upper troposphere. However, the IMAGES and Harvard models

were found to have difficulties calculating the observed partitioning of NOy among NO, HNO3,

and PAN, in the regions where data is available for comparison purposes. Also, IMAGES does

not get the correct seasonal cycle for ozone. Since the Harvard model contains a simplified upper

troposphere, it appears inappropriate for aircraft assessments for latitudes greater than 45 °. Given

the problems with IMAGES and the Harvard model in the upper troposphere and lower

stratosphere (in the 300 to 200 mbar region) the use of these models in assessing the effects of
aircraft emissions is questionable.

Despite these problems with the models, the results are in agreement with prior studies and suggest

that aircraft do have an effect on concentrations of upper tropospheric nitrogen oxides and ozone.

Although these effects, as calculated by the models, may be large enough to be measurable, the

current sets of observational measurement data (as discussed in Chapter 3) do not clearly indicate

any effects on nitrogen oxide and ozone levels due to aircraft. Effects on the total column of ozone

from aircraft appear to be relatively small.

As with earlier published modeling studies, all of the results presented here, including the range of

sensitivity studies investigating several major uncertainties in model treatments of important

processes, suggest that emissions from aircraft increase ozone in the upper troposphere. How well

is this relationship established? Existing measurements of NOx and ozone indicate that such a

relationship is to be expected for the level of nitrogen oxides determined in the models.

Unfortunately, there are insufficient global-scale data to define the background atmosphere and

variability for concentrations of nitrogen oxides, limiting our ability to draw a strong conclusion
about the expected ozone response.

A number of processes are still poorly represented or are missing in the tropospheric models used

here. For example, effects of production of NOx from galactic cosmic rays [Jackman, 1991, 1993;

Vitt and Jackman, 1996] are not included in the models used here and could have as much as a 2 to

10% effect on upper tropospheric NOx. Major uncertainties still exist about the representation of

effects from lightning and convection in the models. At this point, however, recognized

uncertainties do not appear to be sufficient to change the sign of the effects on ozone from subsonic
aircraft emissions.

The modeling studies indicate that additional measurements for NO and other NOy gases are badly

needed in the upper troposphere (>6 km), in general throughout the globe but particularly at mid-

latitudes in the NH. Questions about the relative amounts of NOy species also need to be resolved.

Large differences were found in the IMAGES and Harvard models in the maximum effects on

ozone from the 5x 1992 emissions case; however, much smaller differences existed in the change
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in ozone integrated over the entire troposphere. Both models were nonlinear in their effects on

ozone relative to the 1992 emissions case, giving more than a linear effect on ozone. With

approximately a doubling in emissions expected for 2015 relative to 1992, the model results

suggest that the effects on ozone should be slightly more than double the effects for 1992. The
differences between the maximum effects in models for the 5x 1992 case still need to be explained

but likely relate to the large differences in model domain, grid structure, and treatment of the

tropopause.

The GMI model is expected to be the primary tool for the future assessments of chemistry effects

from subsonic aircraft emissions. Improved representations, including higher resolution, of

dynamics from DAO, NCAR, and GISS/UCI are expected to be incorporated during the next year.

Chemistry is being tested and will be added to the model. Development of improved

understanding and representation of lightning and convection processes for the model will be

extremely important to reducing the uncertainties of aircraft effects on ozone.

The impact studies conducted so far suggest that current and expected levels of subsonic aircraft

emissions (through 2015) should have at most only a small impact on surface climate (individually

on the order of 0.1*C or less, globally), especially when compared with projections for total fossil

fuel emission effects. The most likely exception to this conclusion concerns aircraft particle

emissions and their effect on contrails. Future studies should emphasize understanding this

forcing, as well as the potential for aircraft gaseous and particle emissions to ultimately affect

natural cirrus cloud radiative properties.

90



Table 4-1. Basic description of global three-dimensional chemistry-transport models participating
in this assessment.

MODEL HORIZONTAL #VERTICAL

RESOLUTION LAYERS

Oat x long)

Total p >200 mbar

TEMPORAL

RESOLUTION

(i.e., altitudes

< 12 km)

IMAGES 5* x 5* 25 21 1 month

HARVARD / GISS 4* x 5 ° 9 7 4 hours

GMI / CCM2 3 ° x 5 ° 44 12 6 hours

GMI / UCI 8 ° x 10 ° 21 8 8 hours

Table 4-2. Chemical model comparison participants.

Model Contributor &
Identifier Affiliation

Colorado Jana Milford & Madhurima Da_

University of Colorado

Harvard Daniel Jacob,

Harvard University

IMAGES

MEDIANTE

Stanford

SUNY

Jean-Francois Milller

Belgian Institute for Space
Aeronomy

Richard Ramamson
ONERA

Mark Jacobson

Stanford University

Chris Walcek

State University of New

York at Albany

Description/Reference

Stockwell et al., [1990]; Gear integrator

Jacob et ai., [1996a]

Mtlller & Brasseur [1995]

Ramaroson & Brasseur [1996]

Atkinson et al., [1992]; DeMore et al., [1994];
Gery et al., [1989]

Stockweil et al., [1990]; Euler integrator;
updated DeMore et al. [1994] kinetics
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Table 4-3. Percentage of mass of NOx produced by lightning as a function of altitude for deep

convective clouds in 3 regimes [Pickering et al., 1996].

Altitude (km) Tropical Marine Tropical Mid-Latitude

Continental Continental

0-1 0.7 3.39 21.9

1-2 0.5 1.44 4.4

2-3 0.7 1.53 1.2

3-4 0.7 1.63 1.8

4-5 0.6 1.1 3.5

5-6 0.7 1.3 4.4

6-7 1.3 1.6 3.9

7-8 4.8 2.8 4.7

8-9 12.1 4.6 5.9

9-10 19.2 6.5 7.8

10-11 20.8 8.4 10.3

11-12 19.7 11.0 10.8

12-13 11.5 14.8 9.3

13-14 4.1 17.2 6.6

14-15 1.3 13.6 2.7

15-16 0.5 6.4 0.6

16-17 0.3 2.1 0.1

17-18 0.3 0.6 0.0

18-19 0.2 0.1 0.0

19-20 0.2 0.0 0.0
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Table 4-4. Sensitivity studies evaluated with the IMAGES and Harvard CTMs (each case

calculated with and without aircraft emissions).

Case IMAGES Harvard

1 Baseline model, 1990 emissions X

2 Baseline model, 1992 emissions X

3 Effects of lightning

A. Turman and Edgar, 2 Tg N yr -1

B. Turman and Edgar, 10 Tg N yr q

C. Price and Rind, 5 Tg N yr-t

D. Price and Rind, 10 Tg N yr -l

Effects of convection

A. Decrease by factor of 2

B. Increase by factor of 2

Effect of heterogeneous chemistry

(no N205+ H20)

Effect of hydrocarbons

(no NMHCs)

Effect of increased recycling

(increase J (HNO3) by factor of 3)

Effect of increased aircraft emissions

(NASA 1992 x factor of 5)

4

7

8

X

X

X

X

X

X

X

X

X

X

X

X

X

X

93



Table 4-5a. Calculated changes in ozone below 150 mb for January and July from the IMAGES

CTM for the sensitivity studies.

Changes In Ozone due to aircraft (%)

January July

Case

1 Standard Model,

1990 aircraft

2 1992 emissions

3A Lightning to
2 Tg N yr-l

3B Lightning to
10 Tg N yr -l

3C Price and Rind

Lightning

4A Convection/2

4B Convection x 2

5 No Hetero. Chem.

6 No NMHC

7 J(HNO 3 x 3)

8 5 x 1992

emissions

30-50°N NH SH Global

1.28 1.21 0.19 0.84

1.32 1.27 0.21 0.89

1.43 1.39 0.29 1.01

1.08 1.00 0.11 0.66

1.01 0.95 0.17 0.67

1.38 1.30 0.22 0.90

1.14 1.09 0.16 0.76

0.90 0.92 0.20 0.68

0.76 0.77 0.14 0.53

1.01 0.97 0.16 0.67

4.77 4.76 1.01 3.40

30-500N NH SH Global

1.99 1.91 0.30 1.07

2.12 2.04 0.33 1.15

2.41 2.38 0.41 1.35

1.49 1.40 0.20 0.78

1.38 1.35 0.22 0.77

2.21 2.11 0.33 1.15

1.66 1.62 0.23 0.91

1.85 1.78 0.31 1.01

1.22 1.17 0.21 0.66

1.58 1.54 0.26 0.88

7.62 7.39 1.59 4.36
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Table 4-5b. Calculated changes in NOx below 150 mb for January and July from the IMAGES
CTM for the sensitivity studies.

Case

1 Standard Model,

1990 aircraft

2 1992 emissions

3A Lightning to 2

TeN/year

3B Lightning to l0

TeN/year

3C Price and Rind

Lightning

4A Convection/2

4B Convection x 2

5 No Hetero. Chem.

6 No NMHC

7 J(HNO 3 x 3)

8 5x 1992

emissions

Changes in

January

NOx due to aircraft (%)

July

30-50"N NH SH Global

4.26 3.87 0.44 2.79

4.00 3.70 0.49 2.68

4.18 3.91 0.62 3.03

4.36 3.79 0.29 2.47

4.51 3.86 0.38 2.68

4.51 4.01 0.51 2.84

4.08 3.78 0.35 2.76

4.20 3.66 0.47 3.19

4.95 4.47 0.34 3.01

4.12 3.70 0.33 2.53

23.83 21.33 2.26 15.29

30-50"N NH SH Global

5.49 5.37 1.08 3.87

6.04 5.94 1.19 4.28

5.86 6.03 1.20 4.34

5.00 4.61 0.95 3.32

4.75 4.61 1.02 3.42

6.33 6.10 1.30 4.35

4.62 4.59 0.81 3.31

5.75 5.64 1.03 3.64

5.95 5.60 1.17 4.08

5.58 5.79 0.83 3.86

32.51 32.71 6.06 23.39
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Table 4-6. Global changes in NOx and ozone during July due to aircraft emissions from the
IMAGES and the Harvard models for altitudes from ground to 150 mb and from 400 - 150 mb (in

parentheses).

(a) Percent Change

Case ANOx (%) AO3 (%)

IMAGES Harvard IMAGES

2 1992 emissions 4.28 (9.65) 2.19 (5.55) 1.15 (1.42)

3C lightning 3.42 (6.22) 2.08 (5.02) 0.77 (0.87)

(5 Tg N, Price and Rind)

3B,3D lightning, 10 Tg N yr -l 3.32 (6.67) 1.70 (3.41) 0.78 (0.96)

4B 2 x convection 3.31 (7.77) 1.98 (5.05) 0.91 (1.10)"

8 5 x 1992 emissions 23.39 10.87 4.36 (4.88)

(53.00) (27.60)

Harvard

0.91 ( 1.04)

0.80 (0.96)

0.61 (0.71)

0.77 (0.91)

3.92 (4.55)

(b) Absolute Change

Case ANOx (Gg N) AO3 (Tg)

2 1992 emissions

3C lightning

(5 Tg N, Price and Rind)

3B,3D lightning, 10 Tg N yr -l

4B 2 x convection

8 5 x 1992 emissions

IMAGES Harvard IMAGES

3.69 (3.42) 2.20 (1.78) 3.96 (2.43)

3.58 (3.32) 2.18 (1.78) 2.78 (1.58)

Harvard

2.66 (1.03)

2.52 (0.97)

3.42 (3.18) 2.14 (1.75) 2.88 (1.75) 2.09 (0.78)

2.78 (2.56) 1.93 (1.56) 3.00 (1.76) 2.23 (0.83)

20.19 10.94 15.03 12.02

(18.79) (8.87) (8.37) (4.5)
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Table 4-7. Radiative forcing and global annual average surface temperature response for
selected aircraft releases.

Perturbation

300x 2015 Aircraft Water Vapor

Radiative Forcing

NA

Surf Temp Response

+1.03°C

15x 2015 Aircraft Water Vapor NA +0.24*C

1.5x 2015 Aircraft Water Vapor NA Less than model variability

1992 Subsonic Aircraft Ozone 0.01 W m -2 Less than model variability

(0.01°C)

5x1992 Subsonic Aircraft Ozone 0.033 W m -2

1992 Subsonic Aircraft Soot ~(10 -3) W m -2

0.0003 W m-2; (over last 30

years 0.0067 W m -2)

1992 C02 Emissions

1992 NOx Emissions 10 -3 W m -2 Locally
i

1992 S02 Emissions 10 -4 W m -2 Locally

0.09°C

Less than model variability

(0.02"C)

Less than model variability

(0.007*C)

Less than model variability
ii

Less than model variability
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Figure 4-1. VerUcaJ resolution fTom 1000 to 100 hPa for the chemical-transport models
participating in this assessment.
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Figure 4-2. Calculated time evolution of concentrations of ozone and NOx during 10 days
following initializationwith identical meteorological and chemical conditions. Simulations at 300

mbar, 235 K, 21 June, 40"N conditions. Initial ozone = 80 ppbv, CO = 100 ppbv, acetone = 0.5
ppbv, and H_O = 100 ppmv. All reactive nitrogen initially present as NO.
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Figure 4-3. Ozone formation rate calculated for upper tropospheric conditions by various
atmospheric chemical reaction mechanisms vs. total concentration of reactive nitrogen. Formation

rates averaged dudng last five days of a lO-day Integration from Identical initial conditions.
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Figure 4-4. Root mean square deviation, relative to mean, expressed as percent for a number of

model parameters after 10-day integration at [NOy] = 3 ppbv. All variables correspond to
outputted concentrations except dO3/dt which refers to ozone formation rate and JNO2 and
J(O3 ---*0(1D)) which refer to calculated photolysis rates.
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and for (b) NO2 and ozone photolysis rate. Ozone formation rates compared at 3 ppbv NOy.
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Figure 4-6. Zonally averaged monthly mean radon concentrations for the models. Top:
IMAGES; Middle, GMI/CCM2; Bottom, GMI/UCI. Left panels are for DJF, right for JJA. Ordinate

has units of pressure (mbar). Abscissa has units of degrees (latitude). Units are volume mixing
ratio times 102'.
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Figure 4-7. Seasonal profiles of models vs. observations of radon. Top left panel, Western U S

during DJF. Top Right Western US over JJA. Bottom Left. San Francisco Region during JJA.
Ordinate has units of height (km). Units are volume mixing ratio times 10 2'. Lines Labeled "O" are

composites of observations. Lines labeled "N", =U", and "1" are the GMI/CCM2, GMI/UCI and
IMAGES models respectively.
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Figure 4-8. Time series of surface values for the models compared to observations of radon at
various stations (month number vs. mixing ratio). Units are volume mixing ratio times 1021. Lines

Labeled "O" are composites of observations. Lines labeled "N", "U", and '1" are the GMI/CCM2,

GMI/UCI and IMAGES models respectively.
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Figure 4-9. Simulated concentrations of aircraft NOy (pptv) at 250 mbar in July.
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Figure 4-10. Simulated zonal mean concentrations of aircraft NOy (pptv) as a function of latitude
and altitude in July. The lower right-hand panel shows the emission inventory (molecules

cm3 sl). The dots indicate the vertical resolution of the different models and of the emission

inventory.
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Figure 4-11. Simulated zonal mean concentrations of NOy (pptv) contributed by individual
sources in the GMI/CCM2 model in July.
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•140 .1M .IM 40 40 40 0 M 8 M lm qM IM

Figure 4-12. Regions for which vertical profiles were derived for model evaluation. Data for NO,

HNO3, and PAN were provided by J. Bradshaw as averages values for grid boxes of 5° in

latitude and longitude, and 1 kin in altitude, derived from (top) the 'NH summer' (June-October)

NASNGTE missions and (bottom) the 'NH winter' AASE-II and PEM West-B aircraft campaigns.

These data were further averaged over the regions shown in the figure to form profiles to compare

with the data. The regions were selected based on the availability of observations and the

spatial patterns apparent in the data for NO.
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Figure 4-13. Vertical profiles for NO, HNO3, and PAN, for three selected regions from Figure

4-12. For each region, the solid lines show the median vertical profiles derived from the 5° x 5°

averages, the squares show the mean for each region, and the horizontal lines show the range of
the 5° x 5° averages. The results from IMAGES are given by the dashed lines, and the results of

the Harvard model by the dotted lines, for the month in which the observations were made. The
model results for NO are noontime values.
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(a) (b)

'!

Figure 4-14. (a) Seasonal cycle of ozone at 500 mbar for Edmonton, Canada, and Natal, Brazil.
The circles are means for 14 years of data, and the vertical lines show one standard deviation

based on the individual measurements for each calendar month [Logan, personal communication].

The results from IMAGES are given by the dashed lines, and the results of the Harvard model b y

the dotted lines, for the grid box containing the station. (b) Vertical profiles for ozone for Edmonton

in January and July, and for Natal in May and October, for the data in (a). Model results as in

(a).
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Figure 4-15. Comparison of model-derived profiles of NO and HNO3 from IMAGES sensitivity

calculations with observations at Ascension Island. Data is shown in terms of mean (crosses)
and median (diamonds) values and one standard deviation of range. The left panels show model

profiles for the baseline run (Case 1, solid line), lightning = 2 Tg (Case 3A, dotted line), lightning =

10 Tg (Case 3B, dashed line), and lightning = Price & Rind (Case 3C, dash-dotted line). The
right panels show the baseline run (Case 1, solid line), reduced convection (Case 4A, dotted

line), enhanced convection (Case 4B, dashed line), and JHNO3*3 (Case 7, dash-dotted line).
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Figure 4-16. Same as Figure 4-15 except comparison with observations of NO and HNO3 in

eastern US (Wallops Island).
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Figure 4-17. Comparison of model-derived profiles of ozone from IMAGES sensitivity

calculations with observations at Wallops Island (top panels) and Natal (bottom panels) for July.

The left panels show model profiles for the baseline run (Case 1, solid line), lightning = 2 Tg
(Case 3A, dotted line), lightning = 10 Tg (Case 3B, dashed line), and lightning = Price & Rind

(Case 3C, dash-dotted line). The right panels show the baseline run (Case 1, solid line),

reduced convection (Case 4A, dotted line), enhanced convection (Case 4B, dashed line), and
JHNO3*3 (Case 7, dash-dotted line).
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NOx Mixing Ratio (pptv) July 300 mb

(a)

300 mb NO. Ippt}, July, Contoured by 1,10,15,20,30,50,70,100,150

(b)

Figure 4-18. Model derived NOx mixing ratios (in pptv) for July at 300 mbar corresponding to
sensitivity calculation Case 2 using 1992 aircraft emissions. (a) IMAGES; (b) Harvard-GISS.

Note: the tropopause outside of the tropics in the Harvard model is too high, implying that 300

mbar is always in tropospheric air.
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Figure 4-19. Zonally-averaged model derived NOx mixing ratios (in pptv) for July corresponding

to sensitivity calculation Case 2 using 1992 aircraft emissions. (a) IMAGES; (b) Harvard-GISS.

Note: the tropopause outside of the tropics in the Harvard model is too high, causing air below
200 mb to always be in the troposphere.
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Figure 4-20. Model derived ozone mixing ratios (in ppbv) for July at 300 mbar corresponding to

sensitivity calculation Case 2 using 1992 aircraft emissions. (a) IMAGES; (b) Harvard-GISS.

Note: the tropopause outside of the tropics in the Harvard model is too high, implying that 300

rnbar is always in tropospheric air.
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Figure 4-21. Zonally-averaged model derived ozone mixing ratios (in ppbv) for July

corresponding to sensitivity calculation Case 2 using 1992 aircraft emissions. (a) IMAGES; (b)
Harvard-GISS. Note: the tropopause outside of the tropics in the Harvard model is too high,
causing air below 200 mb altitude to be always in the troposphere.
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Figure 4-22. Contours of calculated changes in NOx at 300 mbar for July due to 1992 aircralt
emissions (Case 2, relative to atmosphere with no aircraft) as determined by: (a) IMAGES; (b)

Harvard-GISS. Units are pptv. Note: the tropopause outside of the tropics in the Harvard

model is too high, implying that 300 is always in tropospheric air.
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Figure 4-23. Zonally-averaged calculated changes in NOx for July due to 1992 aircraft emissions

(Case 2) as determined by: (a) IMAGES; (b) Harvard-GISS. Units are pptv. Note: the

tropopause outside of the tropics in the Harvard model is too high, implying that 200 mbar and
altitudes below are always in tropospheric air.
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Figure 4-24. Contours of calculated changes in ozone at 300 mbar for July due to 1992 aircraft
emissions (Case 2, relative to atmosphere with no aircraft) as determined by: (a) IMAGES; (b)
Harvard-GISS. Units are ppbv. Note: the tropopause outside of the tropics in the Harvard

model is too high, implying that 300 mbar is always in tropospheric air.
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Figure 4-25. Zonally-averaged calculated changes in ozone for July due to 1992 aircraft

emissions (Case 2, relative to atmosphere with no aircraft) as determined by: (a) IMAGES; (b)
Harvard-GISS. Units are ppbv. Note: the tropopause outside of the tropics in the Harvard

model is too high, implying that 200 mbar and altitudes below are always in tropospheric air.
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aircraft forcings: 15 x 2015 water vapor release (top); 5 x 1992 aircraftemissions effect on ozone

(bottom).
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5. SUMMARY AND CONCLUSIONS

5.1 Summary

This report is the first in a planned series of SASS project assessments of the atmospheric impacts
of present and future fleets of subsonic aircraft. The focus of these assessments is on cruise

emissions of subsonic aircraft and their effects on the Earth's total column abundance of ozone and

its climate. In addition to documenting advances in the scientific understanding of aircraft

atmospheric effects resulting from project activities, the assessments seek to provide an adequate

scientific basis for policy and technology decisions. Determination of assessment adequacy is

difficult, but clearly reduction of uncertainties to levels at or below the predicted magnitudes of the
impacts is required.

The results of this assessment for the current subsonic fleet (i.e., 1992 fleet) are summarized in

Table 5-1. At this stage in the scientific effort most of the assessment results are qualitative in

nature. A few of the aircraft effects are sufficiently well understood to be amenable to realistic

model simulations. Quantitative estimates for those cases are listed in the table along with

associated uncertainty estimates. In the table, ozone changes are given in terms of the total

atmospheric column in order to be comparable to predictions for supersonic aircraft operation and

chlorofluorocarbon release. Total column ozone changes are approximately an order of magnitude

less than tropospheric column changes given in Table 4-5, reflecting the substantially smaller

amount of ozone residing in the troposphere as compared to the stratosphere.

The effect of the current subsonic aircraft fleet on column ozone is estimated to be of similar

magnitude, but of opposite sign to the predicted effects of a future supersonic aircraft fleet

[Stolarski et al., 1995]. Uncertainties are large, relative to the estimated magnitudes of the ozone
effects, for both of the studied aircraft fleets.

Climate impacts are subdivided into direct and indirect "forcings" of the radiative flux at the top of

the troposphere. Direct effects involve absorption or reflection of radiation by contrails and other

exhaust species of interest. Indirect effects refer to the radiative properties of molecules or particles

that are derived from, or modified by, exhaust species of interest (e.g., effects of soot, sulfur

oxides, and water vapor on existing or future cirrus clouds). The sign of a particular radiative

forcing indicates the direction of the expected system thermal response. Positive and negative

forcings are associated with surface warming and cooling, respectively. Radiative forcings are

calculated for steady-state distributions resulting from continued aircraft operation except in the

case of the long-lived gas CO 2, where results are given for a single year (i.e., 1992) of emission

and for the sum total of emissions over the last 30 years.

As evidenced from Table 5-1, the indirect impact of current aircraft emissions of NOx on climate,

through changes in ozone, is comparable to the direct, accumulated, effect of the past 30 years of

aircraft CO2 emissions, albeit with great uncertainty attached to the NOx effect. Both emissions

lead to global warming, but the calculated degrees of warming are within the variability of the

model. Qualitatively, the model studies of ozone change are consistent with those reported by

AERONOX [Schumann, 1995] and show greatest sensitivity to uncertainties in the magnitude of

the lightning source of NOx and in the identification of relevant heterogeneous and non-methane

hydrocarbon chemistry. Assuming that the sensitivity studies have captured the range of

uncertainties in our understanding of critical atmospheric processes, then the range of calculated
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ozonechangesshownin table4.5a(approximatelyafactorof 3) servesasafirst-orderestimateof
theoverallpredictiveuncertainty. Deficienciesin modelparameterizationsalso contributeto the
overall predictiveuncertainty. While thesedeficienciesare largelyunquantifiedat present,the
limitednumberof inter-modelcomparisonsperformedfor this assessmentsuggestthatvariations
in modelconstructioncontributeanadditionalfactorof 1.5to 2 tothepredictiveuncertainty.

In viewof thelargeuncertaintyassociatedwith ozonecalculationsfor thecurrentsubsonicfleet, it
is prematureto attemptquantitativepredictionsof ozone impacts resulting from future fleet
scenarios.Somequalitativeinsightintopotentialfuture impactsis gainedfrom a sensitivitystudy
of theeffectof 5 timesthe1992emissions.Theresultsof this exerciseindicatethatin regionsof
low backgroundNOx, suchas the SouthemHemisphere,ozoneincreasesscaleproportionately
with aircraftNOxemissions.However,in regionsof highbackgroundNOx,suchastheNorthern
Hemisphere,the proportionalitybetweenozoneincreasesand NOx emissionsis somewhatless
than in the low-NOx backgroundregions. This behavioris consistentwith the currentunder-
standingof the competitionbetweenozone production and loss processes(refer to Section
3.2.2.1), although we note that there is substantialquantitativeuncertaintyregarding the
competitionbetweenprocesses.

An approximatethree-foldincreasein air traffic (two-fold increasein NOx emissions)relativeto
today is anticipatedby the year2015. Traffic growth is likely to be greaterin the low-NOx
backgroundAsianPacificregionthanin theNorthAmericanor Europeanregions.Combiningthis
growth patternwith theabove-mentionedmodelsensitivityresultsleadsus to expectthat global
ozone,andtheassociatedradiativeforcing,will increaseessentiallylinearlywith the2015aircraft
fleetsize. Accordingly,a two-foldincreasein aircraftNOxemissions,asis anticipatedby theyear
2015, shouldresultin anapproximatedoublingof the ozone(+ 0.2%) and associatedradiative

forcing (+ 0.02 W m -2) changes due to aircraft.

Climate impacts due to cloud particle formation from aircraft water, sulfur, and soot emissions are

judged to be potentially significant but remain unquantified at this time. Correlated increases in

observed high cloud frequency and jet fuel usage suggest a significant climate connection and

results from several model sensitivity studies indicate that increased cloud cover may impact

climate to a greater extent than aircraft-induced ozone changes. However, there is a great deal of

uncertainty regarding both the magnitude and sign of the radiative forcing associated with contrail

and cirrus cloud increases. Existing global climate models have difficulty incorporating cloud

microphysical details and an adequate observational database has not yet been compiled with which

to test the simplifying parameterizations employed in the GCMs.

The effects of soot and sulfur on cirrus cloud and contrail microphysics are not well understood at

present. Recent field measurements have discovered that volatile particle emissions from some

commercial aircraft are 3 to 30 times greater than predicted by plume and wake models. Given this

discrepancy and its implied lack of understanding of the nucleation mechanism, any attempt to

estimate the number of aircraft-derived particles capable of acting as IN or CCN is highly

speculative.
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5.2 Recommendatlons

Aircraft emissions of CO2, NOx, and particles (i.e., water, sulfur, soot combinations) have been

identified in this assessment as having potential environmental significance. In contrast to CO2,

NOx impacts are only partially quantified and particle impacts are mostly unquantified. During the

next few years emphasis should be placed on reducing the uncertainty associated with ozone

changes due to NOx emissions and on deriving quantitative estimates of climate impacts of particle

emissions. The former effort requires additional information on the sources of upper tropospheric

NOx in areas of heavy aircraft traffic, such as over continental Europe, continental United States,

the North Atlantic, or the Pacific. In obtaining this information, methodologies must be developed

to differentiate between aircraft, continental surface, lightning, and stratospheric sources of NOx.

Model treatments of ozone chemistry and transport must be significantly improved to render

confident numerical predictions. In addition to assimilating further information of NOx source

strengths and distributions, future models must possess vertical resolutions of at least 1 km in the

upper troposphere to successfully resolve the important chemical and radiative processes. The

model sensitivities to heterogeneous and background NMHC chemistry must be explored with an

aim toward developing a satisfactory set of input reactions. In developing the input reaction set, a

number of potentially important NMHC, aqueous phase, and gas-surface reactions need to be

characterized in the laboratory. In addition, observational data on the composition and distribution

of tropospheric aerosols are required.

Assessment of the climate impacts of particles will most benefit from increased understandings of

the mechanisms of particle formation in aircraft plumes, the tendency of aircraft generated particles

to act as CCN and IN, and the microphysical characteristics of contrails and cirrus clouds.

Collection and analysis of appropriate field data, as is being done in the SUCCESS and POLINAT

missions, is paramount. These data should be complemented by laboratory studies of post-

combustion phenomena, including heterogeneous processes, since the laboratory techniques offer

greater control of the experimental variables. Comparisons of field data to model predictions made

using the results of laboratory studies will increase our understanding of the speciation within the

distribution between the gas-phase and condensed-phase for the major emissions (e.g., NO x and

SOx). Additional characterization of engine exhaust, particularly of SO_ oxidation products and of

particle emissions, is required to define the initial state of aircraft exhaust emissions.

Relating particle microphysical characteristics to differences in cloud and contrail radiative

properties is also required in order to quantify climate impacts of aircraft operation. Improved

characterizations of cloud and contrail radiative properties must be accompanied by efforts to

improve GCM parameterizations of these features.

Assessment of the climatic impact of aircraft emissions (with the exception of CO2) must deal

explicitly with the heterogeneity of the perturbations and associated radiative forcing of the climate.

The radiative impact of the anticipated ozone increases and high-cloud modifications occurs

primarily in the upper troposphere of the northern mid-latitudes, and appears to exert a

fundamentally different climate forcing than equivalent changes in the well mixed greenhouse gases

such as CO2 and CH4. The simple concept of Global Warming Potential may not be adequate to

compare the aircraft effects with those of CO2 and a new approach to indexing climate

perturbations may need to be found.
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Table 5-1. Summary of estimated atmospheric impacts of current subsonic aircraft emissions.

Emittant

NOx

CO2

H20

Impact

03 Column

Direct Radiative

Forcin_
Indirect Rad.

Forcing

O3 Column

Direct Radiative

Forcing

03 Column

Direct Radiative

Impact Estimate

(Global Ave.)

+0.1%

(+0.3% ave.

over 30°-60°N)

+0.001 W m -2

+ 0.01 W m -2

negligible
+0.0003 W m -2

(+0.0067 W m 2

over last 30 _,r.)

small

significant, sign

Absolute Uncertainty Estimate

I-0.5%, NOx sources poorly quantified

small

:k-0.05 W m -2, NOx sources poorly

quantified

small

i-0.0001 W m -2, mainly due to model

uncertainties

large, depends on PSC details

large, radiative transfer properties of

Forcing (due to

contrails)

Indirect Rad.

Forcing

uncertain

potentially

significant

Sulfur 03 Column small

+0.0001 W m -2

contrails poorly known

moderate, depends on involvement in

PSC/O3 processes and/or in plume

processes that result in CCN and IN

large, sources inadequately defined, size

distribution poorl), known

Soot

Direct Radiative

Forcin_
Indirect Rad.

Forcin_

O3 Column

Direct Radiative

Forcin_
Indirect Rad.

Forcin_

potentially

significant

small

+ 0.003 W m -2

unknown

Hydrocarbons 03 Column small

Direct Radiative negligible

moderate, sources inadequately defined,

size distribution poorly known

large, interaction with aircraft soot and

role as CCN/IN poorly defined

small

moderate, size distribution and single

particle albedo uncertain

large, depends on # that are coated with
sulfur and act as CCN or IN

small

small

small

small

small

small

Forcin_

Indirect

Forcin_

CO 03

Rad.

Direct Radiative

Forcin_
Indirect Rad.

Forcing

negligible

small

negligible

negligible
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